# 相干测风激光雷达研究进展和应用

周艳宗<sup>1,2</sup>, 王冲<sup>1,2</sup>, 刘燕平<sup>1,2</sup>, 夏海云<sup>1,2\*</sup>
<sup>1</sup>中国科学技术大学地球和空间科学学院, 安徽 合肥 230026;
<sup>2</sup>中国科学院近地空间环境重点实验室, 安徽 合肥 230026;

**摘要**相干测风激光雷达采用外差探测方式,其后向散射信号经由本振光得到放大,其信噪比理论上可达到量子极限,具 有高时空分辨、高精度的特点。相干测风激光雷达广泛应用于测量风切变、大气湍流、飞机尾流、阵风以及重力波等。目前, 国内外研究机构分别开展了相干测风激光雷达的研究工作。本文介绍了相干测风激光雷达的发展历史,详细介绍了各波段相 干测风激光雷达的最新研究进展,并对相干测风激光雷达的发展趋势进行了简要总结。

关键词 相干激光雷达; 全光纤; 测风; 多普勒

**中图分类号** TN958.98 文献标识码 A

### Research progress and application of the coherent wind lidar

Yanzong Zhou<sup>1,2</sup>, Chong Wang<sup>1,2</sup>, Yanping Liu<sup>1,2</sup>, Haiyun Xia<sup>1,2\*</sup>

1 School of Earth and Space Science, University of Science and Technology of China, Hefei Anhui 230026, China;

<sup>2</sup>Key Laboratory of Geospace Environment, Chinese Academy of Science, Hefei Anhui 230026, China

Abstract The coherent wind lidar adopts a heterodyne detection method, the backscatter signal is amplified by the local oscillation laser, which the signal to noise ratio can reach the quantum limit theoretically, and has the characteristics of high space-time resolution and high precision. Coherent wind lidar is widely used to measure wind shear, atmospheric turbulence, aircraft wake, gust and gravity wave. At present, research institutes at home and abroad have carried out research work on coherent wind lidar. This paper introduces the history of coherent wind lidar, the latest research progress of coherent wind lidar with different wavelengths are described in detail, and the development trend of coherent wind lidar. is summarized briefly.

Key words coherent lidar; all-fiber; wind detection; Doppler

OCIS codes 280.3640; 010.0280; 010.3640

# 1引言

对流层风场、大气退偏比等参数是风能源开发供应、航空安全、大型建筑物以及重大工程安全设计、城 市规划和防灾管理的重要参数,也是大气污染物稀释、扩散、输送的重要参数。目前,使用基于米散射原理

**收稿日期:**年-月-日; **收到修改稿日期:**年-月-日

**作者简介:**周艳宗(1992-),男,硕士,主要从事激光雷达方面的研究工作。Email: yanzong@mail.ustc.edu.cn **导师简介:**夏海云(1979-),男,博士,副教授,主要从事激光雷达技术方面的研究工作。Email:hsia@ustc.edu.cn(通 信联系人)

的相干多普勒测风激光雷达,可以实现从地面起到对流层高度无盲区的大气参数观测,并且具有高精度、高分辨率、大探测范围等优点,成为国际研究的重点。

目前,美国航空航天局(NASA)、美国国家海洋和大气管理局(NOAA)、美国洛克希德马丁公司(LMCT)、 美国雷神公司(Raytheon)、日本三菱公司(Mitsubishi Electric)、法国 Leosphere 公司等相继开展了理论和实验 研究,并进行了商业化样机的研制。国内相干激光雷达主要研究单位包括中国科学技术大学、中国电子科技 集团公司第二十七研究所、中科院上海光学精密机械研究所、哈尔滨工业大学、中国海洋大学、北京理工大 学等。本文简要回顾了相干激光雷达的发展历史,介绍了不同波段相干激光雷达研究现状及其应用。

# 2 相干激光雷达研究现状

全光纤相干多普勒测风激光雷达系统可以分为激光光源模块和发射接收模块及后期的信号处理模块。 如图1所示,在激光出射模块,连续波激光器产生中心频率为*v*<sub>0</sub>的线偏振光,经分束器后分为出射激光和 本振光,出射激光经声光调制器(AOM)调制为脉冲光,并产生*v*<sub>M</sub>的频移,再由放大器进行功率放大,经 望远镜出射。设风场对脉冲光产生的多普勒频移为*v*<sub>d</sub>,则回波信号中心频率为*v*<sub>0</sub>+*v*<sub>M</sub>+*v*<sub>d</sub>。在接收机模 块,回波信号与本振光两者的拍频信号经平衡探测器转换为频率为*v*<sub>M</sub>+*v*<sub>d</sub>的射频电信号,再经采集卡采样 和后续电路数据处理分析得到风场信息。使用基于出射激光脉冲的飞行时间法,可以得到不同距离处的风 场信息。

相干测风激光雷达具有如下优点:

(1)相干探测采取拍频的方式将后向散射信号放大,理论上信噪比可达到量子噪声极限。

(2)相干激光雷达要求本振光及信号光的波前匹配,因此相干激光雷达能够对背景噪声、探测器噪声具 有抑制作用,可实现在无滤波器的条件下连续观测。

(3)相干测风激光雷达无需光学鉴频器,接收光路简单,对温度梯度、应力梯度不敏感。

(4)随着激光波长的增加,单光子能量 E<sub>0</sub> = hv 逐渐减小,从而导致探测难度增加。与直接探测采用价格 昂贵的超导探测器、上转换探测器等,相干探测常采用平衡探测器,缩减了系统成本。





表1给出了测风激光雷达的研究现状,从表1可以看出,激光雷达的发展是随着激光器技术的发展而

不断成熟。从最早的气体 CO2 激光器到固体激光器,相干激光雷达的工作波长也随之变化。

相对于 CO<sub>2</sub> 激光器和闪光灯泵浦固体激光器,二极管泵浦的固体激光器在发光效率、激光器尺寸大小 和使用寿命等方面都有巨大提升。相对于 CO<sub>2</sub> 激光器,固态激光器的波长更短,为了实现更好的相干混频 效率,短波长对光学器件表面精度的要求更高,光路精度要求也更高,短波长对大气折射率变化和湍流更敏 感,但是短波长具有很多优势。根据径向风速v、多普勒频移 $v_a$  与波长  $\lambda$  的关系:  $v_a = 2v/\lambda$ ,相同的径 向风速,短波长产生的多普勒频移更大,因而在频率分辨率相同的情况下,提高了相干多普勒测风激光雷达 的测风精度。同时,根据距离分辨率  $\Delta R$  和脉冲时域半高全宽  $\Delta T$  之间的关系:  $\Delta R = c\Delta T/2$ ,固态激光器的脉 冲宽度可以做的更短,从而可以提高激光雷达的距离分辨率。固态激光器的激光波长范围连续可调,这样就 可以选择一些大气窗口更好的波长,实现更低的大气吸收率,在低激光能量下实现更远的探测距离。

表1多普勒测风激光雷达研究状况

| Detection        | Coherent Detection |          |                  |               |          |        |  |
|------------------|--------------------|----------|------------------|---------------|----------|--------|--|
| Method           |                    |          | ←                | $\rightarrow$ |          |        |  |
| Wavelength       | 10.6µm             | 2μm      | 1.5µm 1.06µm     |               | 532nm    | 355nm  |  |
| Laser            | $CO_2$             | Tm:YLuAG | Raman OPO-Nd:YAG | Nd:YAG        | Nd:YAG   | Nd:YAG |  |
|                  |                    | TmH:YAG  | Er               |               |          |        |  |
| Reference        | [2]                | [3]      | [4]              | [5]           | [5]      | [5]    |  |
| Detection Object | Aerosol            |          |                  |               | Molecule |        |  |

#### Table1 Research status of Doppler wind lidar.

#### 2.1 相干激光雷达波长选取考虑因素

(1)大气透过率。图 2 是基于 Modtra 软件模拟的从可见光到近红外波段,不同天顶角下,大气透过率和 波长关系,从图中可以看出,在不同的天顶角下,1.1µm、1.5µm 和 2.1µm 等波长大气的透过率出现峰值<sup>[6]</sup>。



图 2 从可见光到近红外波段不同天顶角下的大气的透过率

Fig2. The transmittance of the atmosphere from visible light to near infrared bands at different angles

(2)人眼安全,激光增益介质。图 3 给出了近红外波段激光增益介质以及人眼最大曝光率(Maximum Permissible Exposure, MPE)的示意图<sup>[7]</sup>,从图 3 中可以看出:光纤激光器的增益介质分别在 3 个波段,分别

是 1.06 μm、1.55 μm 和 2.1 μm,在这三个波段可实现高脉冲能量的激光。与其它波段相比 1.55 μm 附近 MPE 达到最大值,约为 10<sup>4</sup> J/m<sup>2</sup>,比 2.1 μm 高出约 1 个数量级,比 1.06 μm 高出约 6 个数量级。



图 3 近红外波段激光增益介质和人眼最大曝光率示意图 Fig3 Laser gain medium, and human eye maximum exposure rate in the near infrared

(3)光纤损耗。激光在光纤中的衰减主要由光纤本身材料不均匀、瑞利散射及光纤中的杂质散射和吸收等因素造成。图 4 给出了光纤损耗与波长间的关系,其中 1.5µm 波段光纤损耗最小,可达 0.2dB/km, 2µm 和 1.06µm 次之,在这三个波段可实现全光纤链路,提高系统的集成度<sup>[8]</sup>。







(4)天空背景辐射。由于天空背景的影响,会造成雷达白天工作的性能变差,假设太阳为 5900K 的理想 黑体,其光谱辐射如图黑线所示,黄色阴影和红色阴影分别为大气层顶和海平面的太阳辐射。从图 5 可以看 出,随着波长的增加太阳背景辐射逐渐减小,长波长的工作波段的激光雷达更有优势<sup>[6][9]</sup>。





综合以上因素,相干激光雷达在波长选取的时候主要集中在 1.5μm 和 2.0μm,同时 1.5μm 波段为通讯 波段,各种光器件比较成熟,使得 1.5μm 成为目前的主流波段。接下来分别介绍不同波段的相干激光雷达 的发展。

#### 2.2 气体相干测风激光雷达

CO2激光器具有高能量转化效率、稳定的单频率激光输出、高能量的脉冲和连续波输出、激光波长的大 气透射窗口好、人眼安全等特点,被相干雷达系统大规模使用<sup>[1]</sup>。

第一台基于连续波(CW)CO2激光器的相干多普勒测风激光雷达由 NASA 的 Huffaker 研制成功<sup>[2]</sup>,该雷达使用焦距可调的变焦光学系统,实现不同的空间分辨率,该雷达的大气后向散射信号被接收望远镜耦合进 CO2激光器的谐振腔进行放大,并选择与本振光匹配的激光模式,与本振光进行拍频。本系统的本振光和出射激光都没有经过移频,所以该套系统是"自差"或"零差"系统。由于激光器谐振腔增益带宽的限制,该系统在风速较大时多普勒频移较大,导致后向散射信号超出谐振腔增益带宽,无法工作。1968年,在雷神公司(Raytheon)和美国国家航空航天局(NASA)的合作下,对该系统进行升级,解决了大风速情况下系统失能问题,并用于实现几百米高空情况下飞机产生的涡流<sup>[10][11]</sup>和大气边界层内风场的探测<sup>[13][14]</sup>。

到了 1970 年代,为了实现更远的风场探测距离,基于主振荡功率放大器(Master oscillator power amplifier, MOPA)技术的更高功率的脉冲式 CO<sub>2</sub>激光器开始应用于相干多普勒测风激光雷达。1970 年代早期,第一台脉冲式 CO<sub>2</sub>相干多普勒测风激光雷达系统由美国雷神公司研制成功<sup>[15][16]</sup>,用于探测商业航班线路上的晴空 湍流。该系统脉冲能量为 10mJ,脉冲重复频率 200Hz,并于 1972 年和 1973 年在 NASA 的 Convair 990 飞 机上进行了机载实验,之后,Bilbro 使用该机载系统成功对龙卷风进行了观测<sup>[17]</sup>。

1980 年代,为了进一步缩小激光器体积并增加激光器的功率,横向激励气体(Transverse excited atmospheric-pressure, TEA)激光器开始被使用,基于 TEA 技术,激光单脉冲能量可达到 100mJ。从 1980 年代中期,美国的 Hardensty 课题组及其他机载测风项目的课题组,开始使用单脉冲能量 1J,脉冲重复频率 20Hz 的脉冲式 CO<sub>2</sub>激光器<sup>[18][19][20][21][22]</sup>作为相干多普勒测风激光雷达的光源。

1997 年,美国大气研究中心(NCAR)的 Mayor<sup>[23]</sup>和加州理工大学的 Kavaya<sup>[24]</sup>使用波长为 9.25μm 和 10.6μm 的 TEA CO<sub>2</sub>相干多普勒测风激光雷达开展了大气折射率结构常数、湍流和大气后向散射参数测量的 相关工作。法国国家科学院(CNRS)的 Flamant 和德国航空太空中心(DLR)的 Werner 课题组,合作进行了基于 TEA CO<sub>2</sub>激光器的机载脉冲式相干多普勒测风激光雷达的研究<sup>[25]</sup>。

CO<sub>2</sub>激光技术的问世,在一定程度上提高了相干激光雷达探测能力,但由于 CO<sub>2</sub>激光器能耗高,体积 大,工作环境要求低温等缺点,限制其发展。

#### 2.3 1.06µm 相干激光雷达

1985年, 斯坦福大学的 Kane 课题组研发了基于 Nd:YAG 激光器的 1.06μm 波长相干多普勒测风激光雷 达<sup>[26]</sup>,该系统使用闪灯泵浦激光器将激光脉冲功率放大至 2.3kW,实现了 600m 风场和 2.7km 的云层探测。

1988年, Kavaya 和 Henderson 领导的课题组也研发出了 1.06μm 波长的相干多普勒测风激光雷达系统<sup>[27]</sup>, 该雷达在激光脉冲宽度为 1μs 时能量为 8mJ,在脉冲宽度为 0.5μs 时能量为 5mJ,重复频率为 10Hz,该雷达 实现了 3.75km 的水平风场探测距离。随后,在美国相干技术公司(CTI)、NASA 马歇尔太空飞行中心(MSFC) 和 NASA 兰利研究中心(LaRC)的共同合作下,将该系统的脉冲能量升级为 1J,脉冲重复频率 10Hz,在肯尼 迪宇航中心(KSC),为发现者号航天飞机发射和着陆过程中提供气象保障,实现了地表到 26km 高度的风场 探测<sup>[28]</sup>。由于 1.06μm 在人眼安全方面不及 1.5μm 和 2μm 波长,开始逐渐被这两个波长取代。

#### 2.4 1.5µm 相干激光雷达研究现状

2000 年以后,得益于光纤通信技术的发展,结构更为紧凑,发光效率更高,成本更低的 1.5µm 波长的 相干多普勒测风激光雷达系统成为研究的新热点。

从第一台基于 CO<sub>2</sub> 激光器的相干多普勒测风激光雷达问世以来,洛克希德马丁公司和美国相干技术公司(LMCT)就一直在致力于相干多普勒测风激光雷达的研究。在 2002 年,LMCT 发布了基于 2μm 的 WindTracer 商用相干多普勒测风激光雷达系统。目前 WindTracer 已经升级为基于 1.617μm 的 Er:YAG 激光器。NASA 使用商用 WindTracer 系统进行了飞机风切边,晴空湍流等探测,并于 2009 年在丹佛国际机场对 飞机涡流进行了建模和预测<sup>[29]</sup>。

由于 3mJ 的单脉冲能量导致 WindTracer 对激光器的性能、光学器件的品质等要求都很高,造成器件的 寿命都很短且极易发生损坏,造成了系统的适用性差<sup>[30][31]</sup>。为此,NASA 研发了基于 Er:Glass 光纤激光器 的全光纤 Windimager 相干多普勒测风激光雷达系统<sup>[31]</sup>。其系统装置及风速扫描结果如图 6 所示。



图 6 NASA 相干激光雷达装置图及风速测量结果图 Fig6. NASA coherent lidar installation diagram and wind velocity measurement results.

该系统与常用的相干多普勒测风激光雷达系统相比,其创新点在于:(1)在声光调制器(AOM)之前加入 了一个光开关,用于抑制AOM的直流噪声泄露。(2)激光模块参数可调,实现近距离低脉冲能量,高脉冲重 复频率,高距离分辨率的探测,或者实现高脉冲能量,低脉冲重复频率,低距离分辨率的远距离风场探测。 (3)使用2个4像素的高灵敏度InGaAs探测器,分开1米的距离放置在雷达望远镜前40米处,用来调节望远镜的 重叠因子。通过外场试验证明,在脉冲能量240µJ,脉冲宽度400ns,脉冲重复频率4kHz,累计0.25s情况下, 当PM2.5含量为10µg/m<sup>3</sup>时,水平最远探测距离为9.5km,当PM2.5含量为17µg/m<sup>3</sup>时,垂直最远探测距离为3km。 2010 年 8 月,NCAR 的 Spuler 基于连续波相干多普勒测风激光雷达,在 12km 高空进行了飞机前方湍 流探测的机载实验<sup>[32]</sup>。该系统使用的是波长为 1560nm 的 DFB 激光器,5W 的单模光纤放大器,带放大器 模块的 InGaAs 二极管探测器,采集卡采样频率为 200MHz。飞机机翼吊舱处安装直径 50mm 的望远镜,望 远镜聚焦在飞机前方 30 米。NCAR 使用飞机上皮托管获取的飞机飞行速度与连续波相干多普勒测风激光雷达测得的飞行速度进行对比,得到激光雷达测量风速的精度优于 0.052m/s。

美国 FiberTek 公司是全球著名的光电科技公司。2011 年, FiberTek 公司的 Akbulut 进行了湍流和波音 747 飞机尾流的数值模拟,并使用该公司自己研发的相干多普勒测风激光雷达进行了实际探测<sup>[34]</sup>。该系统工 作波长在1.55μm,线宽2.5kHz,相对强度噪声(RIN)在20kHz重复频率时小于-140dBc/Hz,AOM频移55MHz, 使用二级激光放大系统将出射激光脉冲能量放大至120μJ,脉冲重复频率为25kHz,脉冲宽度800ns。

2016 年, FiberTek 公司进一步提高了激光雷达的脉冲能量<sup>[33]</sup>。使用中心波长为 1572.3nm, 脉冲能量 440μJ 的激光雷达实现了二氧化碳气体探测。

日本三菱电机有限公司(MEC)从 1990 年代后期开始致力于相干多普勒测风激光雷达的研究工作<sup>[35]</sup>。

1998 年, 三菱电机公司的 Asaka 使用 1.53μm 波长的半导体种子激光器, 经 Er,Yb:Glass 激光器放大器 放大后, 实现 2.5mJ 单脉冲能量, 200ns 脉冲宽度, 20Hz 脉冲重复频率的脉冲激光输出, 使用直径 600mm 的望远镜实现超过 800m 的水平探测距离<sup>[36]</sup>。这是世界上首台基于 1.5μm 人眼安全波长的相干多普勒测风 激光雷达。

2001 年, Yanagisawa 将 Er,Yb:Glass 激光器改进为波长为 1.54μm 的 Er,Yb:Glass 激光器,单脉冲能量为 10.9mJ,脉冲宽度 228ns,脉冲重复频率 15Hz<sup>[37]</sup>,并将该激光器用于望远镜直径 100mm 的相干多普勒测风 激光雷达系统,在距离分辨率为 30m 的情况下实现 5km 距离的风场探测<sup>[38]</sup>。

2003 年,经过 Hiranno 的升级,三菱电机公司 1.54μm 的 Er,Yb:Glass 相干多普勒测风激光雷达系统的 探测距离被提升到了 10km,并使用该系统进行了一些外场试验<sup>[39]</sup>。

全光纤系统具有结构紧凑、方便组装、方便维护、成本低、系统更稳定等诸多优点。因此三菱公司从 2002 年起,开始报道其全光纤相干多普勒测风激光雷达系统的研发成果,完成了机载验证实验,并于 2003 年推出其首台原理样机<sup>[40]</sup>。2006 年,三菱电机公司推出了商用的全光纤相干多普勒测风激光雷达系统 LR-05FC<sup>[41]</sup>。2010 年,升级之后的 LR-08FS 系统被用于香港机场<sup>[42]</sup>。

2007 年, 三菱电机通过使用芯径 25μm 的大芯径光纤, 在 LR-08FS 机型的光纤激光放大器后方再增加 一个光纤激光放大器,使用二级放大系统将单脉冲能量提高至 179μJ,实现大于 10km 的水平风场探测。至 此,三菱电机公司已将全光纤相干多普勒测风激光雷达系统按照探测距离分为三个系列(1 英里、3 英里、5 英里)<sup>[43][44]</sup>。

2012 年, Sakimura 使用 Er,Yb:Glass 平面波导技术<sup>[45]</sup>,使用二级激光放大技术,对出射激光输出功率进行进一步放大<sup>[46]</sup>,实现了超过 30km 的水平风场探测距离。

随后,在 2014年,三菱电机公司又报道了该系统在机载实验中的结果<sup>[47]</sup>。在 12km 飞行高度时,该系统可以实现大于 9km 的水平探测距离,可以用于提前 30s 发现飞机前方的晴空湍流<sup>[48]</sup>。



图 7 三菱电机公司机载雷达风速测量结果

Fig7. Mitsubishi Electric Corporation airborne lidar wind velocity measurement results

2008年,法国航空航天中心(ONERA)首次报道了基于 1.5μm 光纤激光器的相干多普勒测风激光雷达<sup>[49]</sup>, 并使用本系统进行了飞机尾流的探测。在考虑到光纤的受激布里渊现象之后,ONERA 自主研发了掺 Er,Yb 的光纤激光放大器<sup>[50]</sup>。

2009 年, ONERA 对第一代相干多普勒测风激光雷达系统进行了升级, 使用三级泵浦对种子激光进行放大, 并使用大模场面积光纤抑制受激布里渊现象, 进一步将激光器的脉冲能量提高至 120μJ, 实现了飞机尾流的探测<sup>[51][52]</sup>。

2014 年,通过在大模场面积的光纤中加入应力等方式,ONERA 进一步提高了光纤的受激布里渊阈值 <sup>[53]</sup>,在单脉冲能量 370μJ 的情况下,实现了超过 10km 的风场探测距离。

2015 年, ONERA 通过使用多个光纤放大器并联,提高光纤激光器的激光脉冲能量<sup>[54]</sup>,在 500μJ 脉冲 能量情况下,实现 16km 的风场探测距离<sup>[55]</sup>。通过与 Leosphere 公司合作,该激光器已经应用于 WindCube 产品中<sup>[56][57]</sup>.并进行了灾难天气预测,机场风切变监测等外场试验<sup>[58][59][60][61]</sup>。

法国 Leosphere 成立于 2004 年,与 ONERA 和丹麦科技大学 (DTU)都有合作关系<sup>[56][57]</sup>。其产品分为陆 基 WindCube 系列和风电机舱雷达 Windiris 系列,广泛应用于风力发电<sup>[62]</sup>、航空安全保障<sup>[63]</sup>、天气预报<sup>[64]</sup>、 空气质量监测<sup>[65]</sup>等。图 8 为其产品测量的风速结果与微波雷达测量结果,结合二者的测量结果可以预测雷 暴引起的风切变对飞机着陆的影响。

英国 ZephIR 公司为英国 QinetiQ 公司 2007 年成立的子公司。在 1990 年代中期, QinetiQ 公司就致力于使用光纤激光器替代当时相干多普勒测风激光雷达系统中使用的 CO<sub>2</sub>激光器,并于 1990 年代后期研究成功了全光纤的连续波相干多普勒测风激光雷达系统<sup>[66][67]</sup>,在 2002 年研究成功了全光纤的脉冲式相干多普勒测风激光雷达系统<sup>[66][71]</sup>,并与 DTU 合作,将其系统用在风力发电领域<sup>[69][70]</sup>。



图 8 (a)微波雷达风速测量结果 (b) Leosphere 公司相干雷达风速测量结果

Fig8 (a) Microwave radar wind velocity measurement results (b) Leosphere coherent lidar wind velocity measurement results

2003 年,QinetiQ 公司与 DTU 合作研发了该公司的第一台商用的基于连续波的相干多普勒测风激光雷达,该系统使用变焦式望远镜,实现不同距离处的风场探测,并使用自己独特的算法系统,去除云层对风速 探测精度的干扰。该套系统在 2003 年 12 月经过外场实验验证后,已经在世界 50 多个国家和地区销售超过 3000 套。该公司目前的产品为 ZephIR300,可安装在陆基,移动平台或风电机机舱上。

英国 SgurrEnergy 公司成立于 2002 年,与 DTU 合作生产了 Galion 系列脉冲式相干多普勒测风激光雷达,主要用于海上和陆地风力发电机厂的风场探测,风能储量预测等<sup>[72][73]</sup>。2013 年 DTU 根据多年实际使用情况,给出了 Galion 系列的测试报告<sup>[74]</sup>,认为该系统稳定可靠,目前的其型号为 G250 和 G4000。

英国 Halo-Photonics 公司从 1980 年代末期就开始研究基于 CO<sub>2</sub>激光器的相干多普勒测风激光雷达系统,并在 2001 年研发了基于光纤器件的 1.548μm 脉冲式相干多普勒测风激光雷达系统,并在 2002 年使用该系统进行大气风场观测<sup>[75]</sup>。

2004年,Halo-Photonics公司基于掺 Er,Yb 激光放大器,研发出了波长为 1.562µm,脉冲能量 1.15mJ 的 高功率激光器<sup>[76]</sup>。在 2005年,使用该高功率激光器,将其公司的相干多普勒测风激光雷达的探测距离提升 到了 8km<sup>[77]</sup>。并使用该雷达对雷暴<sup>[78]</sup>、晴空湍流<sup>[79]</sup>、热带雨林的边界层变化<sup>[80]</sup>、冰晶云下落速度<sup>[81]</sup>、湍流 耗散率<sup>[83]</sup>等进行了研究。图 9 为其公司基于其产品对大气垂直速度及云顶高度的反演结果。

丹麦科技大学(DTU)风能技术中心主要研究风力发电领域的相关技术,在相干多普勒测风激光雷达领域 与 ZephIR, Leosphere 等公司有大量合作。由于风力发电领域对激光雷达的制造成本要求苛刻,所以 DTU 更关注于造价相对便宜的连续波相干多普勒测风激光雷达。Abari 课题组从理论上设计了具有区分径向风速 方向的连续波相干多普勒测风激光雷达<sup>[84][85][86]</sup>,并从理论上提出了一种可以同时测大气退偏振比和大气风 场的相干多普勒测风激光雷达<sup>[87]</sup>。DTU 的一些课题组也在致力于使用更便宜的半导体激光器替代光纤激光 器,进一步降低相干多普勒测风激光雷达的成本<sup>[88][89]</sup>。DTU 还推出了商用的 WindScanner 产品,有脉冲式 和连续波两种模式,可以实现 0~300m 高度的风场探测。表 2 给出了国外相干激光雷达主要研究单位及指标。



图 9 Halo-Photonics 公司机载雷达风速测量结果边界层反演结果

Fig9 Halo-Photonics airborne lidar wind measurement results and boundary layer inversion results

目前,Halo-Photonics 公司将产品线分为长距离探测和短距离探测的相干多普勒测风激光雷达,可以实现视线风场和三维风场探测。其探测距离最远的产品为 Strean Line<sup>xR</sup>。

| Parameters            | Wavelength(µm) | Energy(µJ) | Pulse     | PRF(Hz) | Detection | Distance      | Telescope    |
|-----------------------|----------------|------------|-----------|---------|-----------|---------------|--------------|
|                       |                |            | Width(ns) |         | Range(km) | resolution(m) | diameter(mm) |
| Mitsubishi (2001)     | 1.54           | 10900      | 228       | 15000   | 5         |               | 100          |
| Halo-Photonics(2004)  | 1.562          | 1150       |           |         | 8         |               |              |
| Mitsubishi(2010)      | 1.5            | 5          | 500       | 4000    | 1.5       | 70            | 50           |
| FiberTek(2011)        | 1.5            | 120        | 800       | 25000   |           |               |              |
| Mitsubishi(2012)      | 1.55           | 1400       | 580       | 4000    | 30        | 300           | 150          |
| SgurrEnergy(2013)     | 1.55           |            |           |         | 4         |               |              |
| ONERA(2014)           | 1.545          | 500        | 650       | 10000   | 16        | 200           |              |
| QinetiQ(2015)         | 1.5            |            |           | 10000   | 0.2       | 20            |              |
| NASA(2016)            | 1.5            | 240        | 400       | 20000   | 0.4~10    | 15~60         | 101          |
| Leosphere(2017)       | 1.54           |            | 25~200    |         | 12~14     | 25~200        |              |
| LMCT (2017)           | 1.617          | 2500±500   | 250±50    | 750     | 15        | 100           |              |
| Halo-Photonics (2017) | 1.562          |            | 800       |         | 12        | 18~120        |              |

表 2 1.5μm 国外相干激光雷达研究单位及指标 Table2 Parameters of 1.5μm coherent lidar abroad

得益于国内光纤器件制造工艺的提高,以及机场飞行安全、环保产业、风力发电等对风场观测需求的加 大,国内相干多普勒测风激光雷达的技术水平发展迅猛。

2010年,中国电子科技集团公司第二十七研究所(CETC27)李冬梅等报道了一套基于 1.5µm 的连续波相 干多普勒测风激光雷达系统,实现了 200m 距离内的风速测量<sup>[90]</sup>。2013 年和 2015 年,中国电子 27 所又分 别报道了他们全光纤相干多普勒测风激光雷达系统与测风塔和探空气球的对比实验<sup>[91][92]</sup>,在 800m 的探测 距离内,均取得了良好结果。

2011 年,中国西南技术物理所(SITP)(209 所)周鼎富课题组在报道了 1.55μm 全光纤相干多普勒测风激 光雷达系统,实现了 5m~200m 高度范围内的风场测量,并与试验基地内测风塔数据进行了对比<sup>[97]</sup>。

中科院上海精密光学机械研究所(SIOM)刁伟峰等在 2012 年首次报道了基于全光纤 1.539μm 的相干多 普勒测风激光雷达<sup>[93]</sup>,并在 2014 年对系统进行了升级,实现水平 3km 的探测距离,垂直方向 1.9km 的探测 距离<sup>[94]</sup>。2015 年,刁伟峰等采用采用非线性最小二乘法对激光雷达测量的风速剖面矢量进行反演,激光雷 达与风廓线雷达测量的风速进行了对比,两者测量的水平风速,风向和竖直风速相关系数分别为 0.988, 0.941 和 0.966<sup>[95]</sup>。

北京理工大学张寅超课题组一直从事于相干多普勒测风激光雷达的理论研究。在 2014 年,与中科院上海精密光学机械研究所合作研制了一台全光纤的相干多普勒测风激光雷达系统,基于该系统进行了一些模拟仿真的研制和数据处理算法的研究<sup>[96]</sup>。

2017 年,209 所周鼎富课题组报道了其最新的全光纤相干多普勒测风激光雷达系统在不同天气类型下的探测性能,证明了晴天、阴天、雾霾天和雨天四种天气类型下该系统都具有良好的性能<sup>[98]</sup>。

中国海洋大学(OUC)吴松华课题组在 2014 年报道了其 1.55µm 的全光纤相干多普勒测风激光雷达系统<sup>[99]</sup>。该系统被用于风电厂的风场观测。经过不断的改造和升级后,推出了商用的 WindPrint 系统,吴松华课题组报道了在不同地形下,WindPrint 系统的探测性能,以及用于湍流探测的一些算法<sup>[100][101]</sup>。2018 年,该课题组提出基于共轭梯度算法的速度方位显示风场反演方法,应用最优化理论,将共轭梯度算法代替传统 傅里叶变换算法<sup>[102]</sup>。

2017 年,中国科学技术大学夏海云课题组研制成功世界上第一台能同时观测大气退偏振比和大气风场的相干多普勒测风激光雷达。该系统在测风模式下,在 100µJ 脉冲能量,15kHz 重复频率时,可以实现 6km 的水平探测距离<sup>[103]</sup>。相比于传统的相干测风激光雷达,该系统采用时分复用的模式,将回波信号通过 PBS 后,将 P 偏振态经过经过 3km 的延时后到达探测器与本振光拍频,从而实现偏振态的测量。其装置图和系统测量结果如图 10 所示。

同年该课题组提出利用联合时频分析的方法对相干激光雷达数据进行处理,可以清楚地检测出风切变的动态结构。相比于传统的快速傅里叶变换算法,自适应最优核时频分布具有运算量小,交叉项抑制效果好,时频聚集度高等优点<sup>[104]</sup>。表 3 为国内相干激光雷达研究单位及指标。



图 10 中科大全光纤测风激光雷达及风速风向测量结果

Fig 10 All-fiber coherent wind lidar of USTC and results of wind velocity and direction

表3国内相干激光雷达研究单位及指标

Table3 Parameters of coherent Doppler lidar in China

| Parameters  | Wavelength(µm) | Energy(µJ) | Pulse     | PRF(Hz)           | Detection | Distance      | Telescope    |
|-------------|----------------|------------|-----------|-------------------|-----------|---------------|--------------|
|             |                |            | Width(ns) | $\langle \rangle$ | Range(km) | Resolution(m) | Diameter(mm) |
| STIP (2011) | 1.55           | 100        |           |                   | 3         |               |              |
| SIOM(2012)  | 1.540          | 43         | 500       | 10000             | 3         | 75            | 50           |
| OUC(2015)   | 1.55           | 50         | 400       | 10000             | 4         | 60            |              |
| USTC(2017)  | 1.548          | 100        | 300       | 15625             | 6         | 60            | 80           |

图 11 给出了国内外 1.5µm 相干激光雷达的探测距离及脉冲能量指标,从图 11 可以看出,探测距离随着激光脉冲量的增大而增大,同时国内机构研究相对于国外研究机构起步比较晚。



图 11 1.5µm 激光雷达研究机构探测距离及脉冲能量指标

Fig11 Detection distance and pulse energy parameters of 1.5µm lidar research institutions

#### 2.5 2.0µm 相干激光雷达研究现状

2μm 波长在人眼安全方面优势巨大,比 1.06μm 波长的人眼允许最大曝光功率高 4 个数量级。出于对人 眼安全的考虑,2μm 波长的全固态相干多普勒测风激光雷达系统比 1.06μm 系统应用领域更广泛。

第一台 2.09µm 波长的相干多普勒测风激光雷达使用闪光灯泵浦的 Tm,Ho:YAG 激光器,由 Henderson 课题组在 1990 年首次报道<sup>[105][106]</sup>。1991 年,Suni 和 Henderson 进一步优化了雷达系统,使用 2µm 波长的激光器,在 20mJ 的激光脉冲能量,20cm 直径的望远镜情况下,实现了 20km 距离的水平风场探测和 145 公里的硬目标探测<sup>[107]</sup>。基于 Henderson 的技术,美国相干技术公司使用纯半导体泵浦的 Tm:YAG 激光器,设计出了第一台 2.01µm 的机载相干多普勒测风激光雷达,并在 1994 年使用 NASA 的波音 737 飞机进行机载实验,该系统使用 InGaAs 探测器,脉冲能量为 1.8mJ,脉冲宽度为 0.5µs,距离分辨率为 75 米,探测到了风切变和微下击暴流<sup>[108]</sup>。1996 年,该公司经过改进设计,进行了精度为 10cm/s 的机载矢量风场探测。美国国家海洋和大气管理局(NOAA)使用类似设计的相干多普勒测风激光雷达,基于船载<sup>[109]</sup>或地基系统<sup>[110][111][112]</sup>,在空间分辨率最高为 30m 情况下,对大气边界层进行了多年的高分辨率风场观测<sup>[114]</sup>。图 13 为其观测结果。得益于 2µm 激光器和激光雷达数据处理技术<sup>[117][118]</sup>的发展,美国洛克希德马丁公司合并美国相干技术公司后,推出了成熟的商用 WindTracer<sup>[119][123]</sup>相干多普勒测风激光雷达系统。



图 12 NOAA 相干激光雷达风速测量结果 Fig 12. NOAA lidar wind velocity measurement results

NASA 和美国空军将高脉冲能量(10mJ), 100Hz 脉冲重复频率的 2µm 相干多普勒测风激光雷达系统用 在机载测风应用上,用于探测晴空湍流探测,以及飞机周边的风场探测。2012 年,NASA 的 Kavaya 等报道 了基于 2µm 相干多普勒测风激光雷达风速测量结果。该系统采用脉冲能量 250mJ,脉冲重频 10Hz,脉宽 180ns。图 13 为其实验风速的测量结果<sup>[113]</sup>。



Fig 13. NASA lidar wind velocity measurement results

单脉冲能量达到 125mJ 的 2μm 激光器系统还计划用于星载测风激光雷达系统<sup>[115]</sup>,目前也有小部分 2μm 的系统被集成在其他类型的雷达系统中<sup>[116]</sup>。

2010年,哈尔滨工业大学王春晖课题组建立了 2µm 相干测风激光雷达系统,对理论模型、2µm 处的光学设计及信号流程算法进行了验证。其中激光器单脉冲能量为 2mJ,重复频率 100Hz,脉冲宽度为 300ns,望远镜口径 150mm,得到了 16m 和 96m 处探测目标外差信号<sup>[120]</sup>。

2015年,北京理工大学张寅超课题组基于全微分和统计理论对 2μm 星载相干测风激光雷达的风速及风向误差进行建模。建立了通用型的星载相干测风激光雷达合成水平风速和风向误差计算模型<sup>[121]</sup>,并对天基相干激光雷达的关键技术进行分析<sup>[122]</sup>。

# 3 相干激光雷达应用

从上述相干激光雷达发展历程来看,目前其应用方向主要有以下几个方面:

(1)风切变测量。风切变是指风速矢量在空中水平或垂直距离上的变化。风切变会造成飞机偏离路线,造成飞机失事。中国香港九龙天文台基于 2.0µm 的相干激光雷达实现了风切变的追踪,其测量结果如图 14 所示<sup>[124]</sup>。



Fig 14. Wind shear detected by Hong Kong observatory

(2) 飞机尾流测量。飞机的飞行过程会对大气产生扰动,其翼尖会产生涡旋流动场,会严重威胁飞行器的飞行安全。ONERA 基于 1.5µm 机载相干激光雷达,对飞机产生的飞机轴向的涡流进行提取,其测量结果如图 15 所示<sup>[125]</sup>。



图 15 ONERA 测得的飞机涡流

(3)湍流测量。大气湍流是由大气不规则运动产生,常在大气边界层产生,湍流扩散会伴随能量和物质交换,其产生的剪切力远大于层流运动。从而造成飞机飞行事故。NOAA 基于相干激光雷达风速测量结果,反演出大气的湍流信息,并对混合层的高度进行了估计。图 16 为垂直风速误差和混合层高度,其中黑

Fig 15. Aircraft wake vortex detected by ONERA

色线条表示混合层的高度[126]。





(4) 重力波分析。大气的温度、密度、风场等参数信息会随着重力波活动发生变化,重力波的产生与强对流活动、背景风场、灾害性天气联系也十分密切。DLR 基于相干激光雷达的水平和垂直风速信息对纳维亚山脉的内部重力波进行表征。图 17 为其水平方向不同高度处风速图和小波变换后的功率谱图<sup>[127]</sup>。





Fig 17. Horizontal wind perturbations measured at 1.8- and 6.7-km altitude. (left) Corresponding wavelet power spectra(right)

(5)风能发电。风能作为新兴能源,其重要作用是风能发电上,随着相干激光雷达鲁棒性的提高,其 对大气研究和电力寻址等方面起着非常重要的作用。图 18 为中国海洋大学利用其相干激光雷达系统对风机 及其周围风场扫描得到的结果<sup>[101]</sup>。



图 18 中国海洋大学相干激光雷达风速测量结果 Fig 18. OUC lidar wind velocity measurement results

# 4 相干激光雷达发展趋势

通过对国内外相干激光雷达发展历史的总结,相干激光雷达呈现以下的发展趋势:

(1)相干激光雷达历经气态到全固态,再到全光纤相干测风激光雷达三个过程,激光器的波长也由 10.6µm 到 1.06µm 再到 2µm 和 1.5µm,其中主流波段主要在 1.5µm。

(2)由于风场的双向测量要比单方向测量具更明显的优势,相干激光雷达也从以单一角度锥扫描发展 到多角度扫描模式,实现了三维风场的探测。

(3)随着相干探测技术的提高,相干激光雷达探测风速灵敏度以及探测距离增加。但是由于气溶胶主要分布在 5km 以下,随着探测距离增加气溶胶含量急剧下降,从而增加了回波信号的探测难度,因此,相干激光雷达测风垂直探测距离往往限制在 5km 的高度。目前通过光纤放大器并联、泵浦放大等方式可提高激光器能量从而提高测量距离。

(4)人眼安全方面得到满足, 1.55 μm 附近 MPE 达到最大值,比 2.1 μm 高出约 1 个数量级,比 1.06 μm 高出约 6 个数量级。同时 1.5μm 波段的光纤和光器件生产工艺成熟,大气窗口透过率高等优点也使得目前相干激光雷达研究的主流波段为 1.55 μm。

(5)从商业化角度来看,国外实现商业集成化的公司较多,如Leosphere、Halo-Photonics公司、日本 三菱电机公司等,而国内研究机构目前主要用于实验研究,相对成熟的相干激光雷达公司较少。

(6)从信号算法处理角度来看,从传统的快速傅里叶变换、周期图算法,到联合时频分析等信号处理 方法应用,从时间-频率域刻画了信号全貌,提高系统的距离分辨率。

## 5 结论

相干激光雷达因具有高精度、高时空分辨等优点被广泛应于用大气风场测量,航空航天安全等各个方面。随着激光技术的发展,相干激光雷达技术也不断成熟,相干激光雷达目前已经实现全光纤结构,并朝着 小型化、集成化的趋势迈进,本文介绍的各研究机构成果对相干激光雷达的工作展开具有指导意义。

#### 参考文献

- [1] Patel C K N. Interpretation of CO<sub>2</sub> Optical Maser Experiments[J]. Physical Review Letters, 1964, 12(21): 588.
- [2] Huffaker R M. Laser Doppler detection systems for gas velocity measurement[J]. Applied Optics, 1970, 9(5): 1026-1039.
- [3] Quant F, Farmer K R, Tan P V, et al. Handheld laser induced breakdown spectroscopy device: U.S. Patent 9,506,869[P]. 2016-11-29.
- [4] Phillips M W, Hannon S M, Henderson S W, et al. Solid state coherent lidar technology for space-based wind measurement[C]//Optics in Atmospheric Propagation, Adaptive Systems, and Lidar Techniques for Remote Sensing. International Society for Optics and Photonics, 1997, 2956: 68-76.
- [5] Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical properties of high-Performance polycrystalline Nd: YAG ceramics for solid-State lasers[J]. Journal of the American Ceramic Society, 1995, 78(4): 1033-1040.
- [6] Shangguan M J. Laser remote sensing with 1.5 μm single photon detectors[D]. University of science and technology of China, 2017.

上官明佳. 1.5µm 单光子探测器在激光遥感中的应用[D]. 中国科学技术大学, 2017.

- [7] Philippov V, Codemard C, Jeong Y, et al. High-energy in-fiber pulse amplification for coherent lidar applications [J]. Optics Letters, 2004, 29(22): 2590-2592.
- [8] Zhu J P, Optoelectronic technology foundation, science press, 2009.
   朱京平等,光电子技术基础,科学出版社, 2009.
- [9] Xia H Y. Direct Detection Doppler Wind lidar based on aerosol backscattered signal with Twin-channel Fabry-Perot etalon[D] Soochow University, 2006.
   夏海云.基于气溶胶后向散射的双边缘直接探测多普勒测风激光雷达研究[D].苏州大学, 2006
- [10] Huffaker R M, Jelalian A V, Thomson J A L. Laser-Doppler system for detection of aircraft trailing vortices[J]. Proceedings of the IEEE, 1970, 58(3): 322-326.
- [11] Vaughan J M, Harris M. Lidar measurement of B747 wakes: observation of a vortex within a vortex[J]. Aerospace science and technology, 2001, 5(6): 409-411.
- [12] Köpp F, Schwiesow R L, Werner C. Remote measurements of boundary-layer wind profiles using a CW Doppler lidar[J]. Journal of climate and applied meteorology, 1984, 23(1): 148-154.
- [13] Woodfield A A, Vaughan J M. Using an Airborne CO2 CW Laser for Free Stream Airspeed and Wind shear Measurements[R]. ROYAL AIRCRAFT ESTABLISHMENT BEDFORD (ENGLAND), 1984.
- [14] Vaughan J M, Brown D W, Davies P H, et al. Comparison of SAGE II solar extinction data with airborne measurements of atmospheric backscattering in the troposphere and lower stratosphere[J]. Nature, 1988, 332(6166): 709.
- [15] Bilbro J W, Vaughan W W. Wind field measurement in the nonprecipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system[J]. Bulletin of the American Meteorological Society, 1978, 59(9): 1095-1100.
- [16] Bilbro J W, DiMarzio C, Fitzjarrald D, et al. Airborne Doppler lidar measurements[J]. Applied optics, 1986, 25(21): 3952-3960.
- [17] Hall F F, Huffaker R M, Hardesty R M, et al. Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar[J]. Applied optics, 1984, 23(15): 2503-2506.
- [18] Post M J, Neff W D. Doppler lidar measurements of winds in a narrow mountain valley[J]. Bulletin of the American Meteorological Society, 1986, 67(3): 274-281.
- [19] Post M J, Cupp R E. Optimizing a pulsed Doppler lidar[J]. Applied optics, 1990, 29(28): 4145-4158.
- [20] Banta R M, Olivier L D, Gudiksen P H, et al. Implications of small-scale flow features to modeling dispersion over complex terrain[J]. Journal of Applied Meteorology, 1996, 35(3): 330-342.
- [21] Rothermel J, Cutten D R, Hardesty R M, et al. The multi-center airborne coherent atmospheric wind sensor[J]. Bulletin of the American Meteorological Society, 1998, 79(4): 581-599.
- [22] Doran J C, Fast J D, Horel J. The VTMX 2000 campaign[J]. Bulletin of the American Meteorological Society, 2002, 83(4): 537-551.
- [23] Mayor S D, Lenschow D H, Schwiesow R L, et al. Validation of NCAR 10.6-μ m CO2 Doppler lidar radial velocity measurements and comparison with a 915-MHz profiler[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(5): 1110-1126.
- [24] Kavaya M J, Menzies R T. Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations[J]. Applied optics, 1985, 24(21): 3444-3453.
- [25] Werner C, Flamant P H, Reitebuch O, et al. Wind infrared Doppler lidar instrument[J]. Optical Engineering, 2001, 40(1): 115-126.
- [26] Kane T J, Byvik C E, Kozlovsky W J, et al. Coherent laser radar at 1.06 μm using Nd: YAG lasers[J]. Optics letters, 1987, 12(4): 239-241.

- [27] Kavaya M J, Henderson S W, Magee J R, et al. Remote wind profiling with a solid-state Nd: YAG coherent lidar system[J]. Optics letters, 1989, 14(15): 776-778.
- [28] Hawley J G, Targ R, Henderson S W, et al. Coherent launch-site atmospheric wind sounder: theory and experiment[J]. Applied optics, 1993, 32(24): 4557-4568.
- [29] Proctor F H, Hamilton D W. Evaluation of fast-time wake vortex prediction models[J]. AIAA paper, 2009, 344.
- [30] Prasad N S, Tracy A, Vetorino S, et al. Innovative fiber-laser architecture-based compact wind lidar[C]//Photonic Instrumentation Engineering III. International Society for Optics and Photonics, 2016, 9754: 97540J.
- [31] Prasad N S, Sibell R, Vetorino S, et al. An all-fiber, modular, compact wind lidar for wind sensing and wake vortex applications[C]//SPIE Defense+ Security. International Society for Optics and Photonics, 2015: 94650C-94650C-11.
- [32] Spuler S M, Richter D, Spowart M P, et al. Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence[J]. Applied optics, 2011, 50(6): 842-851.
- [33] Akbulut M, Hwang J, Kimpel F, et al. Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection[C]//Proc. SPIE. 2011, 8037: 80370R.
- [34] Engin D, Mathason B, Stephen M, et al. High energy, narrow linewidth 1572nm ErYb-fiber based MOPA for a multi-aperture CO2 trace-gas laser space transmitter[C]//Proc. SPIE. 2016, 9728: 97282S.
- [35] Kameyama S, Yanagisawa T, Ando T, et al. Development of wind sensing coherent Doppler LIDAR at Mitsubishi Electric Corporation-from late 1990s to 2013[C]//Proceedings of 17th Coherent Laser Radar Conference, Barcelona, Spain. 2013.
- [36] ASAKA K, HIRANO Y, MORIMOTO Y, et al. Er, Yb: Glass Coherent Lidar Using a Microchip Laser as a Reference Optical Source[J]. The Review of Laser Engineering, 1998, 26(12): 876-880.
- [37] Yanagisawa T, Asaka K, Hamazu K, et al. 11-mJ, 15-Hz single-frequency diode-pumped Q-switched Er, Yb: phosphate glass laser[J]. Optics letters, 2001, 26(16): 1262-1264.
- [38] Asaka K, Yanagisawa T, Hirano Y. 1.5um eye-safe coherent lidar system for wind velocity measurement[C]//Proc. SPIE. 4153: 322.
- [39] Fujiyoshi Y, Yamashita K, Fujiwara C. Visualization of streaks, thermals and waves in the atmospheric boundary layer[J]. Journal of visualization, 2006, 9(4): 359-359.
- [40] Kameyama S, Ando T, Asaka K, et al. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing[J]. Applied Optics, 2007, 46(11): 1953-1962.
- [41] Ando T, Kameyama S, Hirano Y. All-fiber coherent Doppler lidar technologies at Mitsubishi Electric Corporation[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2008, 1(1): 012011.
- [42] Chan P W, Lee Y F. Application of short-range lidar in wind shear alerting[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(2): 207-220.
- [43] Inokuchi H, Tanaka H, Ando T. Development of a long range airborne Doppler Lidar[C]//Proceedings of 27th Congress of International Council of the Aeronautical Sciences, ICAS. 2010, 10(3): 2010.
- [44] Inokuchi H, Endo E, Ando T, et al. Development of an airborne wind measurement system[C]//Int. Symp. on Photoelectronic Detection and Imaging 2009: Laser Sensing and Imaging. 2009: 738205-738212.
- [45] Sakimura T, Watanabe Y, Ando T, et al. 3.2 mJ, 1.5 um laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR[C]//Proceedings of 17th Coherent Laser Radar Conference, Barcelona, Spain. 2013.
- [46] Kameyama S, Sakimura T, Watanabe Y, et al. Wind sensing demonstration of more than 30 km measurable range with a 1.5 μm coherent Doppler LIDAR which has the laser amplifier using Er, Yb: glass planar waveguide[C]//Proc. of SPIE Vol. 2012, 8526: 85260E-1.

- [47] Inokuchi H, Tanaka H, Ando T. Development of an onboard Doppler lidar for flight safety[J]. Journal of aircraft, 2009, 46(4): 1411.
- [48] Inokuchi H, Furuta M, Inagaki T. High altitude turbulence detection using an airborne Doppler lidar[C]//Proceedings of 29th Congress of the International Council of the Aeronautical Sciences. 2014.
- [49] Dolfi-Bouteyre A, Augére B, Besson C, et al. 1.5 μm all fiber pulsed lidar for wake vortex monitoring[C]//Conference on Lasers and Electro-Optics. Optical Society of America, 2008: CMQ3.
- [50] Canat G, Lombard L, Durécu A, et al. Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm[C]//Lasers and Electro-Optics, 2007. CLEO 2007. Conference on. IEEE, 2007: 1-2.
- [51] Dolfi-Bouteyre A, Canat G, Valla M, et al. Pulsed 1.5-\$\mu \$ m LIDAR for Axial Aircraft Wake Vortex Detection Based on High-Brightness Large-Core Fiber Amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 441-450.
- [52] Dolfi-Bouteyre A, Augere B, Valla M, et al. Aircraft wake vortex study and characterization with 1.5 μm fiber Doppler lidar[J]. AerospaceLab, 2009 (1): p. 1-13.
- [53] Renard W, Goular D, Valla M, et al. Beyond 10 Km Range wind-speed measurement with a 1.5 μm all-fiber laser source[C]//CLEO: Applications and Technology. Optical Society of America, 2014: AW1P. 5.
- [54] Lombard L, Valla M, Planchat C, et al. Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source[J]. Optics letters, 2015, 40(6): 1030-1033.
- [55] Lombard L, Dolfi-Bouteyre A, Besson C, et al. Long range wind lidars based on novel high spectral brilliance all-fibered sources[C]//Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XI. International Society for Optics and Photonics, 2015, 9645: 96450B.
- [56] LEOSPHERE O F. Wind and EDR Measurements with Scanning Doppler LIDARs for Preparing Future Weather Dependent Separation Concepts[J]. 2015.
- [57] Thobois L, Loaec S, Boquet M, et al. Recent developments of windcube Doppler Lidars for airport wind hazards monitoring[C]//WakeNet-Eu 2014 Workshop. 2014.
- [58] Vrancken P, Wirth M, Rempel D, et al. Clear air turbulence detection and characterisation in the DELICAT airborne lidar project[C]//25th International Laser RADAR conference. 2010.
- [59] Besson C, Augere B, Canat G, et al. New fiber laser for lidar developments in disaster management[C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications VIII; and Military Applications in Hyperspectral Imaging and High Spatial Resolution Sensing II. International Society for Optics and Photonics, 2014, 9250: 92500H.
- [60] Barbaresco F, Thobois L, Dolfi-Bouteyre A, et al. Monitoring wind, turbulence and aircraft wake vortices by high resolution RADAR and LIDAR remote sensors in all weather conditions[C]//Proc. of URSI-France. 2015.
- [61] Hallermeyer A, Dolfi-Bouteyre A, Valla M, et al. Development and assessment of a Wake Vortex characterization algorithm based on a hybrid LIDAR signal processing[C]//8th AIAA Atmospheric and Space Environments Conference. 2016: 3272.
- [62] Kigle S. Wake Identification and Characterization of a Full Scale Wind Energy Converter in Complex Terrain with Scanning Doppler Wind Lidar Systems[D]. Ludwig-Maximilians-Universität München, 2017.
- [63] Augros C, Tabary P, Davrinche D, et al. Test of an X-band Doppler polar metric radar combined with a Doppler LIDAR for wind shear detection at Nice Airport[J].
- [64] Gibert F, Dumas A, Thobois L, et al. Afternoon transition turbulence decay revisited by Doppler Lidar[C]//Symposium on boundary layer and turbulence, Boston, USA. 2012.
- [65] Chen Y, An J, Wang X, et al. Observation of wind shear during evening transition and an estimation of submicron aerosol concentrations in Beijing using a Doppler wind lidar[J]. Journal of Meteorological Research,

2017, 31(2): 350-362.

- [66] Karlsson C J, Olsson F Å A, Letalick D, et al. All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements[J]. Applied optics, 2000, 39(21): 3716-3726.
- [67] Harris M, Constant G, Ward C. Continuous-wave bistatic laser Doppler wind sensor[J]. Applied optics, 2001, 40(9): 1501-1506.
- [68] Jørgensen H E, Mikkelsen T, Mann J, et al. Site wind field determination using a CW Doppler LIDARcomparison with cup anemometers at Risø[C]//Special topic conference: The science of making torque from wind. Delft University of Technology, 2004: 261-266.
- [69] Smith D A, Harris M, Coffey A S, et al. Wind lidar evaluation at the Danish wind test site in Høvsøre[J]. Wind Energy, 2006, 9(1-2): 87-93.
- [70] Bingöl F. Adapting a Doppler laser anemometer to wind energy[D]. Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark, 2005.
- [71] Pearson G N, Roberts P J, Eacock J R, et al. Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications[J]. Applied optics, 2002, 41(30): 6442-6450.
- [72] Wang H, Barthelmie R J, Crippa P, et al. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie[C]//Journal of Physics: Conference Series. IOP Publishing, 2014, 524(1): 012117.
- [73] Gottschall J, Wolken-Möhlmann G, Lange B. About offshore resource assessment with floating lidars with special respect to turbulence and extreme events[C]//Journal of Physics: Conference Series. IOP Publishing, 2014, 555(1): 012043.
- [74] Gottschall J. Galion lidar performance verification[J]. Fraunhofer IWES, 2013.
- [75] Pearson G N, Eacock J R. Fiber-based coherent pulsed Doppler lidar for atmospheric monitoring[C]//Lidar Remote Sensing for Industry and Environment Monitoring II. International Society for Optics and Photonics, 2002, 4484: 51-58.
- [76] Philippov V N, Sahu J K, Codemard C A, et al. All-fiber 1.15-mJ pulsed eye-safe optical source[C]//Fiber lasers: technology, systems, and applications. International Society for Optics and Photonics, 2004, 5335: 1-8.
- [77] Pearson G N, Ridley K D, Willetts D V. Long range 3D active imagery with a scanned single element 1.5 μm coherent lidar system[C]//Electro-Optical Remote Sensing. International Society for Optics and Photonics, 2005, 5988: 59880M.
- [78] Collier C G, Davies F, Davies J, et al. Doppler radar and lidar observations of a thunderstorm outflow[C]//Proceedings of Fifth European Conference on Radar in Meteorology and Hydrology (ERAD). 2008.
- [79] Hogan R J, Grant A L M, Illingworth A J, et al. Vertical velocity variance and skewness in clear and cloudtopped boundary layers as revealed by Doppler lidar[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(640): 635-643.
- [80] Pearson G, Davies F, Collier C. Remote sensing of the tropical rain forest boundary layer using pulsed Doppler lidar[J]. Atmospheric Chemistry and Physics, 2010, 10(13): 5891-5901.
- [81] Westbrook C D, Illingworth A J, O'Connor E J, et al. Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds[J]. Quarterly
- [82] Journal of the Royal Meteorological Society, 2010, 136(646): 260-276.
- [83] O'Connor E J, Illingworth A J, Brooks I M, et al. A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements[J]. Journal of atmospheric and oceanic technology, 2010, 27(10): 1652-1664.
- [84] Abari C F, Pedersen A T, Mann J. An all-fiber image-reject homodyne coherent Doppler wind lidar[J]. Optics Express, 2014, 22(21): 25880-25894.

- [85] Pedersen A T, Abari C F, Mann J, et al. Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar[C]//Journal of Physics: Conference Series. IOP Publishing, 2014, 524(1): 012004.
- [86] Abari C F, Dellwik E, Mann J. Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar[J]. Atmospheric Measurement Techniques, 2015, 8(10): 4145.
- [87] Abari C F, Chu X, Hardesty R M, et al. A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations[J]. Applied Optics, 2015, 54(30): 8999-9009.
- [88] Hu Q, Rodrigo P J, Pedersen C. Remote wind sensing with a CW diode laser lidar beyond the coherence regime[J]. Optics Letters, 2014, 39(16): 4875-4878.
- [89] Rodrigo P J, Pedersen C. Comparative study of the performance of semiconductor laser based coherent Doppler lidars[C]//High-Power Diode Laser Technology and Applications X. International Society for Optics and Photonics, 2012, 8241: 824112.
- [90] Li D M, Zheng Y C, Pan J Y, et al. Index system of coherence Doppler wind lidar [J]. Optics and Technology, 2010 (6): 880-884.
  - 李冬梅,郑永超,潘静岩,等.相干多普勒激光测风雷达系统研究[J].光学技术,2010 (6): 880-884.
- [91] Pan J Y, Qin S Y, Liu G, et al. Coherent laser wind measurement radar wind field measurement technology [J]. Infrared and Laser Engineering, 2013, 42(7): 1720-1724.
  - 潘静岩, 邬双阳, 刘果, 等. 相干激光测风雷达风场测量技术[J]. 红外与激光工程, 2013, 42(7): 1720-1724.
- [92] Feng Z H, Du G L. Research and verification of coherent Doppler wind lidar [J]. Infrared and Laser Engineering, 2015, 45(2): 128-132.
  - 封治华, 杜改丽. 相干多普勒激光测风雷达系统研究及验证[J]. 激光与红外, 2015, 45(2): 128-132.
- [93] Liu J, Chen W, Zhu X. Development of all-fiber coherent Doppler LIDAR to measure atmosphere wind speed[C]//Optical Instrumentation for Energy and Environmental Applications. Optical Society of America, 2012: ET4D. 1.
- [94] Diao W, Zhang X, Liu J, et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers[J]. Chinese Optics Letters, 2014, 12(7): 072801.
- [95] Diao W F, Liu J, Zhu X P, et al. Study of all-fiber coherent Doppler lidar wind profile nonlinear least square retrieval method and validation experiment[J] Chinese Journal of Lasers,2015,42(09):338-343. 刁伟峰,刘继桥,竹孝鹏,刘源,张鑫,陈卫标.全光纤相干多普勒激光雷达非线性最小二乘风速反演方法及 实验研究[J].中国激光,2015,42(09):338-343.
- [96] Bu Z, Zhang Y, Chen S, et al. Noise modeling by the trend of each range gate for coherent Doppler LIDAR[J]. Optical Engineering, 2014, 53(6): 063109.
- [97] Feng L T, Guo H Q, Chen Y, et al. Experiment of all fiber Doppler liar at 1.55 μm [J]. Infrared and Laser Engineering, 2011, 40(5): 844-847.
  冯力天,郭弘其,陈涌,等. 1.55 μm 全光纤多普勒测风雷达系统与试验[J]. 红外与激光工程, 2011, 40(5): 844-847.
- [98] Fan Q, Zhu K Y, Zheng J F, et al. Detection performance analysis of all-fiber coherent lidar under different weather types[J]. Chinese Journal of Lasers, 2017(2): 320-329. 范琪,朱克云,郑佳锋,等.不同天气类型下全光纤相干激光测风雷达探测性能分析[J].中国激光, 2017(2):320-329.
- [99] Wu S, Yin J, Liu B, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar[C]//Lidar Remote Sensing for Environmental Monitoring XIV. International Society for Optics and Photonics, 2014, 9262: 92620H.
- [100] Zhai X, Wu S, Liu B. Doppler lidar investigation of wind turbine wake characteristics and atmospheric

turbulence under different surface roughness[J]. Optics Express, 2017, 25(12): A515-A529.

- [101] Wu S, Liu B, Liu J, et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, 2016, 24(10): A762-A780.
- [102] Feng C Z, Wu S H, Liu B Y. Research on wind retrieval method of coherent Doppler lidar and experiment verification[J] Chinese Journal of Lasers, 2018,45(04):309-317.
  冯长中,吴松华,刘秉义.相干多普勒激光雷达风场反演方法研究与实验印证[J].中国激光,2018,45(04):309-317.
- [103] Wang C, Xia H, Shangguan M, et al. 1.5 μm polarization coherent lidar incorporating time-division multiplexing[J]. Optics Express, 2017, 25(17): 20663-20674.
- [104] Wang C, Xia H, Liu Y, et al. Spatial resolution enhancement of coherent Doppler wind lidar using joint time– frequency analysis[J]. Optics Communications, 2018, 424: 48-53.
- [105] Henderson S W, Hale C P, Magee J R, et al. Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho: YAG lasers[J]. Optics letters, 1991, 16(10): 773-775.
- [106] Suni P J M, Henderson S W. 1-mJ/pulse Tm: YAG laser pumped by a 3-W diode laser[J]. Optics letters, 1991, 16(11): 817-819.
- [107] Henderson S W, Suni P J M, Hale C P, et al. Coherent laser radar at 2 mu m using solid-state lasers[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1): 4-15.
- [108] Targ R, Steakley B C, Hawley J G, et al. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 μm[J]. Applied optics, 1996, 35(36): 7117-7127.
- [109] Wulfmeyer V, Randall M, Brewer A, et al. 2-μm Doppler lidar transmitter with high frequency stability and low chirp[J]. Optics letters, 2000, 25(17): 1228-1230.
- [110] Lenschow D H, Wulfmeyer V, Senff C. Measuring second-through fourth-order moments in noisy data[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(10): 1330-1347.
- [111] Newsom R K, Banta R M. Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99[J]. Journal of the atmospheric sciences, 2003, 60(1): 16-33.
- [112] Poulos G S, Blumen W, Fritts D C, et al. CASES-99: A comprehensive investigation of the stable nocturnal boundary layer[J]. Bulletin of the American Meteorological Society, 2002, 83(4): 555-581.
- [113] Kavaya M J, Beyon J Y, Koch G J, et al. The Doppler aerosol wind (DAWN) airborne, wind-profiling coherentdetection Lidar system: overview and preliminary flight results[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(4): 826-842.
- [114] Grund C J, Banta R M, George J L, et al. High-resolution Doppler lidar for boundary layer and cloud research[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(3): 376-393.
- [115] Yu J, Singh U N, Barnes N P, et al. 125-mJ diode-pumped injection-seeded Ho: Tm: YLF laser[J]. Optics letters, 1998, 23(10): 780-782.
- [116] Koch G J, Petros M, Barnes B W, et al. Validar: a testbed for advanced 2-micron Doppler lidar[C]//Laser Radar Technology and Applications IX. International Society for Optics and Photonics, 2004, 5412: 87-99.
- [117] Frehlich R, Hannon S M, Henderson S W. Performance of a 2-µm coherent Doppler lidar for wind measurements[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(6): 1517-1528.
- [118] Frehlich R, Hannon S M, Henderson S W. Coherent Doppler lidar measurements of winds in the weak signal regime[J]. Applied optics, 1997, 36(15): 3491-3499.
- [119] Henderson S W, Yuen E H, Hannon S M. Autonomous lidar wind field sensor: design and performance[C]//Application of Lidar to Current Atmospheric Topics III. International Society for Optics and Photonics, 1999, 3757: 18-28.
- [120] Bu Z C, Chen S Y, Zhang Y C, et al. Error modeling and analysis on wind speed and direction for 2µm space

based coherent Doppler lidar[J] Journal of Infrared and Millimeter Waves 2015,34(04):465-470. 步志超,陈思颖,张寅超,陈和,郭磐,葛宪莹.2µm 星载相干测风激光雷达风速及风向误差建模与分析[J].红 外与毫米波学报,2015,34(04):465-470.

[121] Li Y C. Study on heterodyne method and key technology for 2-micrometer wind lidar[D]Harbin Institute of Techology, 2012.

李彦超. 2µm 激光测风雷达外差探测方法与关键技术研究[D].哈尔滨工业大学,2012.

- [122] Zhu Z Y, Gao K, Han L, et al. Technical analysis of space-based coherent wind lidar[J] Laser & Optoelectronics Progress, 2015,52(10):185-193.
  朱振宇,高昆,韩璐,倪国强,高春青.天基相干测风激光雷达技术分析[J].激光与光电子学进展,2015,52(10):185-193.
- [123] Hannon S M. Autonomous infrared Doppler radar: Airport surveillance applications[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2000, 25(10): 1005-1011.
- [124] Shun C M, Chan P W. Applications of an infrared Doppler lidar in detection of wind shear[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(5): 637-655.
- [125] Dolfi-Bouteyre A, Canat G, Valla M, et al. Pulsed 1.5-µm LIDAR for Axial Aircraft Wake Vortex Detection Based on High-Brightness Large-Core Fiber Amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 441-450.
- [126] Tucker S C, Senff C J, Weickmann A M, et al. Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(4): 673-688.
- [127] Witschas B, Rahm S, Dörnbrack A, et al. Airborne wind lidar measurements of vertical and horizontal winds for the investigation of orographically induced gravity waves[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(6): 1371-1386.

### 网络首发:

标题:相干测风激光雷达研究进展和应用

作者:周艳宗,王冲,刘燕平,夏海云

收稿日期: 2018-06-11

录用日期: 2018-07-12

**DOI:** 10.3788/10p55.122803

## 引用格式:

周艳宗,王冲,刘燕平,夏海云. 相干测风激光雷达研究进展和应用[J].激光与光电子学进展,2018,55(12):122803.

## 网络首发文章内容与正式出版的有细微差别,请以正式出版文件为准!

## 您感兴趣的其他相关论文:

基于Janus配置的三光束激光多普勒测速仪

邬战军 韩凤山 范哲 林志立 北京航空航天大学仪器科学与光电工程学院,北京 100083 激光与光电子学进展,2013,50(7):071404

### 能量重心校正法在提高激光多普勒测速精度中的应用

于啸 洪光烈 凌元 崔桂华 舒嵘 中国科学院上海技术物理研究所空间主动光电系统技术实验室, 上海 200083 激光与光电子学进展,2012,49(9):091201

### 高精度1.55 μm全光纤激光相干测速实验及数据分析

王希涛 刘秉义 吴松华 姚琪 李志刚中国海洋大学海洋遥感研究所,山东 青岛 266003激光与光电子学进展,2011,48(6):060301

### 基于卡尔曼滤波的相干激光雷达距离像复原仿真

夏志伟 李琦 王骐 哈尔滨工业大学可调谐激光技术国家级重点实验室, 黑龙江 哈尔滨 150081 激光与光电子学进展,2011,48(5):051002

### 相干激光雷达

李东勋 激光与光电子学进展,1983,20(2):41