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A B S T R A C T

Low-level wind shear poses a threat to the safety of aircraft during take-off and landing, while its precise 
detection remaining a critical challenge in meteorological monitoring. To solve this problem, this study proposes 
a method for the identification of low-level wind shear and shear line based on coherent Doppler wind lidar. The 
method integrates a ramp detecting algorithm and a dual filtering mechanism for wind shear identification, 
subsequently applying spatial clustering analysis to reconstruct low-altitude wind shear lines. An airport field 
experiment demonstrates effective detection of shear lines induced by gust fronts and convective weather sys
tems. An urban field campaign verifies the practicality in detecting shear lines of complex underlying surface, 
achieving a maximum forecast of approximately 25 min through spatial distribution and wind field analysis. This 
study provides technical support to improve the extreme weather warning capability and ensure the safety of 
low-altitude flights.

1. Introduction

Wind shear is defined as a sudden and significant change in wind 
speed or direction, typically manifesting as vertical or horizontal gra
dients (ICAO, 2005). A shear line is a narrow and long region of 
concentrated wind field discontinuities, with pronounced velocity or 
directional gradients. Wind shear frequently co-occurs with thunder
storms and frontal systems, posing significant risks to civil aviation and 
low-altitude operations (Luers and Hairies, 1983; Nechaj et al., 2019). 
Therefore, effective wind shear detection is critical for ensuring 
personnel safety, mitigating property losses, and optimizing flight effi
ciency. Particularly the rapid expansion of China’s low-altitude aviation 
economy necessitates the development of high-precision low-level wind 
shear warning systems (Huang, 2025).

Common atmospheric wind field detection equipment includes sur
face anemometers, Doppler weather radar, and Doppler wind lidar, etc. 
However, surface anemometers exhibit constrained vertical detection 
range due to single-point sampling limitations. Doppler weather radar 
effectively detects large particles in precipitation environments (Wadler 
et al., 2023; Wilson et al., 1984), whereas lidar achieves clear-air low- 
level wind shear identification (Huang et al., 2024; Liu et al., 2019; 

Thobois et al., 2018; Zhang et al., 2019; Zhao et al., 2025). Lidar can 
provide more accurate detection data even under complex surface 
conditions (Luo et al., 2024; Yang et al., 2024), owing to its high spatial 
and temporal resolution (Su et al., 2024; Wang et al., 2021; Wang et al., 
2024). Current warning algorithms comprise ramp detecting algorithm 
(Chan and Shun, 2008), F-factor algorithm (Chan, 2012; Chan et al., 
2011; Lee and Chan, 2013), eddy dissipation rate algorithm (Hon and 
Chan, 2014) and hybrid approaches (Zhao et al., 2025), etc. F-factor or 
eddy dissipation rate algorithm focuses on quantifying the severity of 
shear by defining the single metric to identify wind shear, with limita
tions on scene adaptability. Their research primarily focuses on wind 
shear monitoring in glide path areas, while studies on full-region 
detection remain limited, particularly in shear line identification.

Shear line identification, as an important component of meteoro
logical monitoring, has gone through an evolutionary process from 
manual analysis to intelligent recognition. The initial phase relied on 
artificial weather map analysis, with empirical adaptations and subjec
tive limitations. Numerical wind field analysis methods achieve identi
fication by quantifying gradient parameters (e.g. wind direction, 
vorticity), but exhibit missing detection in complex wind fields with 
multi-scale coupling (Bluestein and Speheger, 1995; Piva et al., 2008). 
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Doppler weather radar implementation enhanced mesoscale feature 
detection (e.g., convergence lines, gust fronts) within precipitation 
systems (Hermes et al., 1993; Huang et al., 2019; Tian et al., 2024), 
while beam attenuation effect and signal obstruction constrain low- 
altitude weak shear identification. In recent years, machine learning 
algorithms have demonstrated considerable potential in addressing 
complex nonlinear relationships, emerging as new approach for shear 
line identification (Biard and Kunkel, 2019; Cai et al., 2021; Lagerquist 
et al., 2019; Liu et al., 2022; Tian et al., 2024). However, issues such as 
poor interpretability and high dependence on the datasets cannot be 
ignored. Consequently, developing more efficient and reliable algo
rithms for low-altitude smaller scale shear line detection remains 
challenging.

In view of the challenges of low-altitude wind shear detection in 
complex environments, this study proposes a method for the identifi
cation of low-level wind shear and shear line based on coherent Doppler 
wind lidar. It is organized as follows: theoretical basis of the method is 
introduced in Section 2. The effectiveness of the method in airport 
experiment and urban complex surface shear identification is verified in 
Section 3. Finally, discussion and conclusion are drawn in Section 4.

2. Methodology

This study proposes a novel wind shear and shear line identification 
method that integrates ramp detecting algorithm and a dual filtering 
mechanism. Unlike previous algorithms it involves the processing of all 
radial wind speed from Plan Position Indicator (PPI) scanning, which 
could ensure full-region wind shear detection as basis of shear line 
reconstruction. Wind shear identification is subject to interference from 
irrelevant scale variations, such as short-range with high-gradient and 
long-range ones with weak gradients. Therefore, scales filtering is 
particularly important in the identification process. A dual screening 
mechanism is set to eliminate these interferences and ensure precise 
identification of significant wind shear ramps (distance segments with 
speed changes). The dual filtering mechanism includes wind shear in
tensity factor (Chan and Shun, 2008; Zhao and Shan, 2022) and total 
wind shear value (WSV) factor to effectively identify wind shear ramps 
above thresholds. The wind shear intensity factor is derived from the S 
factor, which first proposed by Woodfield and Woods, 1983 (Woodfield 
and Woods, 1983). S factor is defined as follows: 
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where dV/dt represents the change rate of wind speed; ΔV represents the 
variation of wind speed; Va represents the aircraft’s approach speed 
when landing, which is usually constant; and ΔL represents the ramp 
length corresponding to ΔV. This factor measures the strength of wind 
shear, the magnitude of which depends largely on the ΔV/(ΔL)1/3. 
Therefore, the S factor simplifies to ΔV/(ΔL)1/3 in detecting wind shear. 
The proposed method also achieves the identification of regional shear 
lines by extracting the shear points of ramps for cluster analysis and 
filtering the clusters that meet the conditions for curve fitting. Fig. 1
illustrates the flowchart of the proposed methodology, which comprises 
the following key steps:

Step 1. Extraction of wind shear ramps from radial wind speed. 
Radial wind speed is retrieved from the lidar spectrum. The invalid and 
isolated data points are eliminated through quality control. The radially 
wind speed from the raw inversion contains noise, which tends to 
overestimate small changes on small scales causing false wind shear 
identification. Processing with smoothing formula can reduce random 
errors. The smoothing formula is defined in Eq. (2). 
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4
U0(i+1), (i = 1, 2,3,…,N) (2) 

where U1 is the wind speed after smoothing, U0 is the original wind 
speed, i represents the data point serial number, and N represents the 
total number of valid data point. All potential ramps are comprehen
sively detected by varying the wind shear ramp detection length (Yuan 
et al., 2022), to obtain wind shear ramps collection of WSR1.

Step 2. Double filtering strong wind shear ramps. Wind shear ramps 
WSR2 are initially filtered out from the WSR1, when the wind shear in
tensity factor ΔV/(ΔL)1/3 exceeding the preset threshold. Subsequently, 
the WSV value of each wind shear ramp in the WSR2 is calculated 
(Baranov and Lemishchenko, 2020). Then strong wind shear ramps 
WSR3 are further filtered by comparing with the preset WSV criteria. The 
WSV value for a single wind shear ramp is calculated as follows.

The mean velocity of the wind shear ramp is calculated based on the 
corresponding wind speed and position of the velocity nodes within the 
ramp as well as the length of the ramp. The mean velocity V is calculated 
by: 

V =
1
2

∑J− 1
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)(
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)

ΔL
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where J denotes the total number of velocity nodes in the wind shear 
ramp, j denotes velocity node serial number, V and l denote the wind 
speed and position of corresponding node, respectively. And the total 
value of the wind energy S0 is calculated by: 

S0 =
1
2
∑J− 1
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)
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Under the continuous approximation, the total value of wind energy 
can be expressed as: 

S0 =

∫ ΔL
2

−
ΔL
2

(V + αx)2dx (5) 

where α measures the change in wind speed per unit distance and x 
represents the position of the measuring point relative to the center of 
the ramp. The integral result is: 

S0 = V2ΔL+ α2ΔL3

12
(6) 

Then, the expression for α can be derived as: 
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where the sign of the α factor is determined by the tendency of the wind 
shear ramp to increase or decrease in velocity. The α factor takes into 

Fig. 1. Flowchart of the method for identifying wind shear and shear line. It 
includes three steps: extraction of wind shear, double filtration, and identifi
cation of shear lines.
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account the wind shear accumulated by the wind speed jitter in the 
ramp, which distinguishes it from the traditional ramp detecting algo
rithm (which takes into account the wind shear at both ends or linear 
fitting). Using this factor can identify the wind shear more accurately 
and filter the eligible wind shear ramps. Finally, the total wind shear 
value of the ramp is calculated by: 

WSV =

̅̅̅
2
3

√

⋅α⋅ΔL (8) 

It is worth stating that different aircrafts have different sensitivities 
to wind shear. Civil airplanes are more sensitive to strong shear, whereas 
smaller aircrafts with low speeds such as unmanned aerial vehicles 
(UAVs) can lose their balance even weak wind shear. Consequently, the 
threshold and criteria should be dynamically adjusted based on regional 
wind field characteristics and shear intensity to meet the monitoring 
needs of different aircraft. Shear characteristics and intensity vary across 
different weather, setting different thresholds is essential for enhancing 
the accuracy of identification. For regions with higher wind speeds and 
stronger shear, a higher threshold could focus on significant shear, thus 
improving detection efficiency. On the contrary, for scenarios with 
weaker wind fields and less intense shear, the threshold is lowered to 
improve the detection sensitivity of relatively weak but meaningful 
shear. Fig. 2 demonstrates a typical identification result of a single radial 
wind shear in the strong convective weather. The blue shading regions 
in Fig. 2a represent detected strong wind shear ramps, while Fig. 2b 
quantifies the shear intensity for each identified ramp with WSV factor. 
Considering that range resolution of lidar is 30–150 m (Xia et al., 2024), 
the initial ramp detection length is set to 300 m in this case. Due to the 
high wind speeds and strong wind shear caused by strong convective 
weather, the wind shear intensity factor ΔV/(ΔL)1/3 threshold is set to 
0.5 based on a series of data validation, which can effectively focus on 
the strong wind shear. The three ramps with the maximum WSV are 
selectively extracted. A pronounced strong wind shear zone is observed 
between the distance of 5.9–8.6 km, characterized by maximum speed 
difference exceeding 16.0 m s− 1 and the WSV value reaching − 14.9 m 
s− 1.

Step 3. Identification of shear lines. Steps 1 and 2 are iteratively 
applied to all azimuthal radial velocity, thereby extracting all strong 
wind shear ramps WSRtotal across the scanning area. Then the location of 
the shear points is recorded for each wind shear ramp in the WSRtotal. 
Specifically, if a wind shear ramp appears a sudden directional change, 
the inflection point of this discontinuity is designated as the shear point. 
For ramps with homogeneous wind direction, the center point of the 
ramp is assigned as the shear point.

Most of the shear points in the area show significant linear distri
bution characteristics, accompanied by a small number of randomly 

dispersed noise points. This distribution suggests that by connecting 
these linearly distributed shear points, a continuous shear line can be 
constructed. It could extend the detection scope from local radial shear 
to regional wind shear identification. However, these non-negligible 
dispersed noise points may interfere with the precise determination of 
the shear line position. Therefore, shear points clustering analysis is 
performed to aggregate spatially adjacent valid shear points while 
filtering out the isolated noise points. The position coordinate of the 
shear point (rk, θk) is converted to Cartesian coordinates 

(
xk, yk

)
, where 

rk represents the lidar-to-point distance, θk represents the azimuth angle, 
and k is the serial number of the shear point. An initial shear point is 
randomly selected as the cluster center, around which a circular region 
with radius Rmin (minimum distance threshold) is defined. Unclassified 
shear points within this region are merged into the cluster, and continue 
searching around each new point while excluding classified ones until 
all points are clustered. After clustering analysis, the resulting clusters 
include not only the linear feature clusters but also invalid clusters. 
Firstly, a threshold for the minimum number of shear points in cluster is 
set to exclude small clusters. Then, the estimated curve length of each 
cluster is calculated using distance formula. Only clusters with lengths 
exceeding a preset threshold are selected for curve fitting, effectively 
filtering out compact point groups. Finally, qualifying clusters undergo 
curve fitting to reconstruct shear lines across the scanning area. Fig. 3a-c 
show the typical results of shear points identification and clustering at 
different moments in the scanning area. In the case, the minimum dis
tance Rmin is defined as 1 km, and the threshold of total number of shear 
points in the cluster is set to 8. The black dots denote the points that do 
not satisfy the clustering conditions, while the other dots of different 
colors denote the different clusters of shear points.

3. Experiments and results

3.1. Shear identification experiment of airport field

The wind shear detection experiment was previously conducted at 
Kunming Changshui International Airport, China (Xia et al., 2024), 
where a long range lidar with 30 km was applied. To validate the 
applicability of the method, two distinct weather events are analyzed: a 
severe convective process and a gust front process. If not specified, local 
time is used.

At 17:38 on March 18, 2022, the flight OTC7157 reported encoun
tering wind shear of undetermined intensity, during the take-off stage. 
Fig. 4 shows the wind shear identification results at 3◦ elevation angle 
and 333◦ azimuth at different times. At 17:01, significant wind shear 
was observed during 6.1–10.1 km with a wind speed difference of 17.8 
m s− 1, with the WSV value of − 11.7 m s− 1. Subsequently at 17:23, four 

Fig. 2. The identification result of a single radial wind shear. (a) shows the identification results of wind shear ramps. (b) shows the calculation results of the WSV of 
the ramps.
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wind shear ramps were detected during the distance of 1.4–15.0 km. The 
speed difference of the strongest wind shear ramp reached 17.4 m s− 1, 
corresponding to a maximum WSV value of − 14.7 m s− 1. The most se
vere wind shear occurred at 17:44, registering a remarkable speed dif
ference of 22.4 m s− 1 within 6.7–14.3 km distance, corresponding to the 
WSV value of − 18.7 m s− 1, which would pose serious risk to aircraft 

operations during take-off and landing stages.
Fig. 5 presents the identification results of wind shear and shear lines 

in the airport area at different times, along with the 3◦ PPI scanning. For 
this case, the shear intensity within the shear center is significantly high, 
while weak wind shear also occurs in the surrounding areas. If the 
threshold is set too low, it will compromise the accurate identification of 

Fig. 3. Results of typical clustering. (a)-(c) are the identification and clustering results of shear points at different moments in the scanning area. The black solid and 
dashed boxes represent the airport runway and glide path, respectively.

Fig. 4. Typical identification results of radial wind shear in convective weather. (a1), (b1) and (c1) show the identification of wind shear ramps at different times for 
3◦ elevation angle and 333◦ azimuthal angle, respectively. (a2), (b2) and (c2) represent the WSV value of each wind shear ramp.

Fig. 5. The results of shear lines identification during convective weather process. (a)-(c) show the identification of wind shear and shear lines and the results of PPI 
scanning at different times of 3◦ elevation angle, respectively. The yellow dotted lines are the cross sections corresponding to each radial speed in Fig. 4. Red triangles 
indicate severe wind shear, characterized by a WSV value exceeding 12 m s− 1. Green circles represent light wind shear, with a WSV value below 8 m s− 1, while yellow 
pentagrams represent moderate wind shear with an intermediate WSV value. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)
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the shear line. Consequently, wind shear points with WSV value 
exceeding 8 m s− 1 were selected for shear line fitting. The PPI scanning 
results reveal the presence of wind shear near the northern runway, 
characterized by prevailing northerly winds in the near field and 
southerly winds in the far. At 17:01, the light and moderate wind shear 
were detected predominantly in the area. A shear line was identified 
near north of the left runway, at a distance of 6–8 km from the lidar. At 
17:23, the intensity of the wind shear detected in the area increased, and 
the influence area of shear line expanded, extending over north runway. 
Notably, the shear line was curved. At 17:44, with the increasing extent 
of low-level northerly winds and the intensification of convective ac
tivity, two shear lines associated with severe wind shear were identified. 
These conditions would pose a significant threat to aircraft landing and 
take-off operations near north runway.

Fig. 6 presents radial wind shear identification results at three 
different times (22:46–23:15) during a gust event on March 14, 2022. 
Given the PPI revealed comparatively lower wind speeds than those in 
convective events, the wind shear intensity factor ΔV/(ΔL)1/3 threshold 
was reduced to 0.4 for enhanced detection sensitivity. The detection at 
22:46 identified moderate wind shear at about 4.1 km from lidar, 
exhibiting a wind speed difference of 7.5 m s− 1 and the WSV value of 9.8 
m s− 1. It was observed that wind shear gradually strengthened, with the 
detection at 23:15 capturing shear activity within the 1.3–10.5 km 
distance. This shear displayed maximum speed difference of 12.5 m s− 1 

and corresponding maximum WSV value of 10.7 m s− 1. The gust- 
induced wind shear intensity is weaker compared to convective weather.

Fig. 7 presents the identification results of wind shear and shear lines 
in the airport area at different times, along with the 2◦ PPI scanning. 
Given the weaker wind shear intensity in gust events relative to 
convective weather, the classification criteria were adjusted. Distinct 
markers denote shear points of varying intensities: red triangles repre
sent severe shear (WSV > 8 m s− 1), yellow pentagrams indicate mod
erate shear (6–8 m s− 1), and green circles mark light shear (<6 m s− 1). 
PPI scanning results revealed northeasterly winds in the near field 
transitioning to southwesterly flows aloft over south glide path. The 
shear line propagated southwestward under northeasterly flows, 
exhibiting a relatively straight shape contrasting with the curved line 
observed in the convective weather.

3.2. Shear identification and forecasting of urban surface

China’s low-altitude aviation economy has entered a phase of rapid 
development recently (Huang, 2025), including general aviation for 

emergency rescue, urban logistics flight, and manned flight, etc. Wind 
shear over complex urban underlying surfaces can cause low-speed, 
small aircraft to lose control or even crash, as small aircraft is sensi
tive to weak wind shear. There is an urgent need to expand wind shear 
detection capabilities from airports to urban scenarios to cater for low 
altitude operations such as electric vertical take-off and landing (eVTOL) 
aircraft and UAVs (Gultepe, 2023).

In contrast to airport with homogeneous terrain, urban surface is 
relatively complex. Urban low-altitude wind turbulence poses a signif
icant challenge to accurate wind shear identification. To validate iden
tification ability of the proposed method in complex wind fields, the 
experiment is conducted at Gulou District, Nanjing city, Jiangsu prov
ince (32◦02′N, 118◦43′E). Fig. 8a shows the location of the Doppler wind 
lidar. The lidar is fixed at the top of a building with height of 150 m, and 
the typical detection range is 15 km. Wind detection results from August 
7, 2024, are selected for analysis.

Fig. 9 shows the results of wind shear and shear lines identification 
and PPI scanning at 0◦ elevation angle from 17:05 to 18:42. Given the 
complexity of urban surface, PPI scanning revealed lower wind speed 
accompanied by diverse weak wind shear within the area. A threshold 
set too high would fail to detect such shear lines—yet these shear lines 
could pose a significant impact on low-altitude UAVs operating in urban 
environments. To effectively identify weak shear, the wind shear in
tensity factor ΔV/(ΔL)1/3 threshold was reduced to 0.3, with classifi
cation criteria defining light shear as WSV < 6 m s− 1 and severe shear 
>8 m s− 1.

According to the results shown in Fig. 9, most of the detected wind 
shear is light. A converging shear line 1 was detected on the southeast 
side of the region, moving away from the lidar driven by the north
westerly winds. Shear line 2 was initially detected at about 9 km dis
tance and moved towards the southeast direction, which was formed 
through convergence of northwesterly and southeasterly flows. Due to 
the low wind speeds behind the line, the shear line 2 moved relatively 
slowly. At 18:17, shear line 3 manifested at approximately 13 km dis
tance. Northwesterly winds of approximately 10 m s− 1 behind shear line 
3 accelerated its southeastward movement, causing it to merge with 
shear line 2 then approached the lidar.

The movement of the shear line is highly correlated with the wind 
field behind it, which serves as the fundamental basis for shear line 
forecasting. Taking shear line 1 as an example, which was located at 
about 9.0 km at 17:05. And at 17:17, the shear line had advanced to 
about 10.0 km. The propagation velocity aligned with the mean wind 
speed in the approximately 1 km region behind it. Single-step movement 

Fig. 6. Typical identification results of radial wind shear in gusty weather. (a1), (b1), and (c1) show the identification of wind shear ramps at different times for 2◦

elevation angle and 215◦ azimuthal angle, respectively. (a2), (b2), and (c2) represent the WSV value of each wind shear ramp.
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forecasting for shear lines 1–3 was conducted by the analysis of wind 
field near the shear lines, combined with lidar-detected arrival time. 
Specifically, calculate the mean wind speed in about 1 km area behind 
the shear line as its propagation speed; Then estimate the arrival time at 
the next position using this speed; Finally compare the forecasted time 
with actual lidar-detected time to assess accuracy.

The forecasting results along with error analysis results are presented 
in Fig. 10. Fig. 10a illustrates the movement forecasting of shear line 1. 
The forecasting revealed that shear line 1 reached about 12.0 km at 
17:40, while the lidar-detected time was 17:41, only with a 1-min time 
error. Subsequent moved to about 14.0 km at 17:54, with forecasting 
error of 1 min. At 17:59, the shear line reached about 15.0 km, with 
forecasting time versus lidar- detected diverging by 6 min. Fig. 10b il
lustrates the movement forecasting of shear line 2, which was located at 
about 9.0 km at 18:05 then gradually approaching lidar. Fig. 10c illus
trates that shear line 3 initially occurred at about 13.0 km. The fore
casting revealed the shear lines 2 and 3 merged together at 18:30. 
Subsequently the lidar showed them at 2.0 km at 18:42, with forecasting 
time errors within 3 min. During this process, the longest forecasting 
time is 25 min.

4. Discussion and conclusion

This study develops a real-time wind shear and shear line detection 
method using Doppler wind lidar, integrating ramp detecting algorithm 
with the dual filtering mechanism and shear point clustering. The 

method uses PPI scanning to effectively achieve the expansion of the 
detection area from glide path areas to the full region. Gradually 
expanding the length of wind shear ramp can effectively avoid missing 
identification. The dual filtering mechanism effectively eliminates two 
interference types: short-range high-gradient shear and long-range weak 
shear gradients. Compared to previous algorithms, the method enables 
selective identification of diverse wind shear to suit different scenarios 
through dynamic threshold adjustment. In addition, the shear lines can 
be derived solely by real-time detection of lidar.

Experimental results demonstrate successful identification of gust 
front-induced and convective shear lines in airport, along with effective 
forecasting of urban shear lines under complex surface. It shows that 
there are differences in the distribution of shear lines under different 
weather conditions. Compared with gusty weather, the shear lines 
generated by strong convective weather are more curved and stronger. 
When convection develops more vigorously, the more curved the shear 
lines are. Due to the complexity of the urban surface, the distribution of 
wind shear is chaotic and the intensity is weak. Accurate identification 
of shear line features contributes to the study of weather change pro
cesses. In addition, experiments revealed a strong correlation between 
shear line movement and its post-shear wind field. A maximum forecast 
of approximately 25 min for urban low-altitude shear lines was suc
cessfully achieved. This not only facilitates a deeper understanding and 
tracking of the atmospheric processes associated with shear lines but 
also effectively mitigates flight risks from abrupt weather changes, 
thereby supporting low-altitude operational safety.

Fig. 7. The results of shear lines identification during gusty weather process. (a)-(c) show the identification of wind shear and shear lines and the results of PPI 
scanning at different times of 2◦ elevation angle, respectively. The yellow dotted lines are the cross sections corresponding to each radial speed in Fig. 6. Red triangles 
indicate severe wind shear, characterized by a WSV value exceeding 8 m s− 1. Green circles represent light wind shear, with a WSV value below 6 m s− 1, while yellow 
pentagrams represent moderate wind shear with an intermediate WSV value. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 8. Lidar station location and picture. (a) shows the lidar position of Gulou District, Nanjing. (b) is a photo of the lidar.
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However, there are still some issues that deserve consideration in the 
future work. Although the proposed method has been well implemented 
for the three typical scenarios with dynamic threshold, additional cases 
are still required to optimize the strategy for threshold selection. An 
adaptive threshold model that autonomously adjusts to real-time wind 
field characteristics can be developed to reduce manual intervention. 
Additionally, the method relies on lidar data, which may be impacted by 
saturated weather (e.g., thunderstorms, heavy rain), beam blockages in 
complex terrains (Yang et al., 2024), and limited detection range 
(Gultepe et al., 2018). Future advancements will enhance lidar hard
ware parameters and supplement with multi-sensor fusion to improve 
identification quality.
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