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ABSTRACT
Correlation-based detection techniques are widely used in the weak periodic signal detection field. Traditionally, they are based on extracting
the correlation of a weak signal from noise. Considering the impact of a weak signal on the randomness of background noise, this article
takes the opposite approach and proposes a weak signal detection technique based on the Durbin–Watson (DW) test and one-bit sampling,
detecting the weak signal due to the extent to which the randomness of noise is affected. The randomness of noise is analyzed through the
DW test, which is a method for detecting the randomness of data sequences through first-order autocorrelation. One-bit sampling is adopted
to reduce the complexity of the sampling circuit and data processing algorithm. The effectiveness of the DW test in the situation of one-
bit sampling is demonstrated through simulation and analysis. Simulation results show that the proposed technique is capable of detecting
weak sinusoidal and square-wave signals with a signal-to-noise ratio (SNR) above −30 dB, and the frequency or SNR of a weak signal can
be further estimated based on mutual constraints. The measured results confirm the capability. In addition, the factors of coherent sam-
pling, noise bandwidth, and comparator threshold that influence the performance of the proposed technique are simulated and discussed in
detail.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0198084

I. INTRODUCTION

A weak signal refers to a signal that is overwhelmed by
strong noise,1,2 and corresponding detection techniques have been
widely applied in radar,3–5 communication,6–8 wheelset-bearing
fault detection,9–11 and other fields.

Over the years, various weak periodic signal detection tech-
niques have been proposed and developed for different applica-
tions. Correlation-based detection is one of the earliest techniques
proposed for weak signal detection.12 In particular, correlation-
based detection techniques mainly use the autocorrelation function
and/or cross-correlation function to detect weak periodic signals
from noise.13–15 The traditional methods extract the correlation
coefficients of each order of the weak signal components in
the mixed signal with noise. Based on the characteristics of the
correlation coefficients, the presence or absence of the weak
signal is determined, i.e., the weak signal is detected according to

the correlation function of the weak signal. It is worth noting that the
well-known instrument called a lock-in amplifier is a typical example
that uses the cross-correlation function to detect weak signals.16–18

Many alternative weak signal detection techniques have also
been extensively developed, including coherent integration,2,19,20

stochastic resonance,21–23 chaotic oscillators,24–26 and wavelet
transforms.27–29 Coherent integration is a simple but effective tech-
nique for weak signal detection. The signal can be coherently
integrated in the time or frequency domain, as the energy increase
speed of the weak signal component is faster than that of the noise
component. The more times the signal is coherently integrated, the
higher signal-to-noise ratio (SNR) will be achieved until the weak
signal is detected. Benzi et al. initially proposed the concept of
stochastic resonance in 1981 to explain the periodic alternation of
glacial and warm climates in paleometeorology;30–32 later, the idea
of stochastic resonance was introduced into the field of weak signal
detection in the 1990s. Stochastic resonance is a unique technique

Rev. Sci. Instrum. 95, 054705 (2024); doi: 10.1063/5.0198084 95, 054705-1

Published under an exclusive license by AIP Publishing

 14 M
ay 2024 03:33:03

https://pubs.aip.org/aip/rsi
https://doi.org/10.1063/5.0198084
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0198084
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0198084&domain=pdf&date_stamp=2024-May-13
https://doi.org/10.1063/5.0198084
https://orcid.org/0009-0004-9516-1946
https://orcid.org/0000-0003-2985-4678
https://orcid.org/0000-0002-5236-3036
https://orcid.org/0000-0001-5542-4802
https://orcid.org/0009-0001-6004-8466
mailto:hujd0707@nuist.edu.cn
https://doi.org/10.1063/5.0198084


Review of
Scientific Instruments

ARTICLE pubs.aip.org/aip/rsi

that uses noise for weak signal detection, rather than suppressing
noise. In a constructed bistable system that is driven by a weak
signal, the noise is utilized for steady-state switching. The seem-
ingly random pulse output from the bistable system can be analyzed
through the spectrum or pulse interval to judge the presence of
a weak signal.11,33 The chaotic oscillator is a distinctive weak sig-
nal detection technique based on the theory of chaos. By adjusting
parameters, a nonlinear system is placed in a critical, chaotic state.
When the system receives a weak signal of a specific frequency,
the phase diagram will convert from a chaotic state to a great
period state; thus, the presence of a weak signal can be determined.
However, the parameters of the system are closely related to the
characteristics of weak signals; experience in parameter adjustment
is required, and no fixed pattern can be followed.34 The wavelet
transform is a time-frequency analysis technique that shares similar-
ities with the fast Fourier transform but is distinct from it. Compared
to the fast Fourier transform, the wavelet transform excels at extract-
ing weak signals from noise. However, the selection of wavelet basis
functions is quite difficult. As with the chaotic oscillator technique,
there is no standard or generic method for wavelet basis function
selection.1

The idea of weak signal detection techniques based on the
correlation of weak signals inspired the use of the opposite tech-
nique in this article. Since the weak signal is mixed with strong
noise, the mixed signal not only has weaker autocorrelation than
the weak signal component but also has weaker randomness than
the noise component. Therefore, techniques for testing the random-
ness of the noise can also be used to detect weak signals, according
to the reduction of randomness after the weak signal is added to
the noise.

The Durbin–Watson (DW) test is widely utilized to assess the
randomness of noise using a simple statistic based on the first-
order autocorrelation coefficient.35–37 Other alternative methods
include the Breusch–Godfrey test,37,38 the Ljung–Box test,39,40 etc.
The Breusch–Godfrey test functions by regressing the residuals of a
time series model on the lagged values of those residuals and exam-
ining the significance of those lagged residuals, while the significance
indicates randomness. The Ljung–Box test statistic is calculated by
examining the sum of squares of autocorrelations at different lags in
the time series. Again, the significance of the test statistic indicates
randomness. In this article, the DW test is adopted for performing
the randomness test of noise. Since the detection of weak signals
usually necessitates a significant amount of data for computation,
in order to reduce the computational complexity of the DW test and
make it easier to implement in the hardware, the noise data for the
DW test is attempted to be sampled using a one-bit analog-to-digital
converter (ADC).

This article proposes a weak signal detection technique based
on the DW test and one-bit sampling, adopts an easy-to-implement
one-bit ADC that is realized through a comparator (CMP) and
a shift register (SR),2,41 and optimizes the implementation of the
DW test to fit one-bit sampling. The result of the DW test reflects
whether a weak signal exists or not and can be further used to esti-
mate the frequency, or SNR, of the weak signal. The effect of weak
sinusoidal and square-wave signals on the randomness of white
Gaussian noise (WGN) is simulated, and the simulation results
show that the proposed technique is able to detect weak signals
from WGN in situations of SNR above −30 dB. The interferences

of coherent sampling, noise bandwidth, and comparator threshold
on the proposed technique are discussed. Further experimental
results verify the effectiveness of the proposed weak signal detection
technique.

The rest of the article is organized as follows: Sec. II details the
proposed weak signal detection technique based on the DW test and
one-bit sampling, Sec. III illustrates the test results with a proto-
type based on the proposed technique, and Sec. IV concludes the
article.

II. PROPOSED TECHNIQUE
Figure 1 shows the architecture of the proposed weak signal

detection technique based on the DW test and one-bit sampling. The
mixed signal, which consists of weak signal and noise, is compared
with a threshold voltage (TH) through a CMP. The output of the
CMP, which is a two-level signal, is sent to a field programmable
gate array (FPGA) and sampled into one-bit data by SRs in mul-
tiple channels. Each SR is composed of several cascaded flip flops.
The CMP and SR equivalently form a one-bit ADC.2,41 The delay
units (DUs) are used to regulate the time offset of a two-level sig-
nal in each channel so that the sampling point of each channel is at
a different time. This design enables randomness testing to be con-
ducted in parallel across multiple channels. In the DW test module
(DWTM), the deviation degree of DW statistics between the mixed
signal and the WGN is calculated in each DW error unit (DWEU).
An average (AVG) unit is used to provide the average of one-bit data
for the DWEUs. The mean value of the DW errors is then calcu-
lated and output. This value indicates the randomness of the mixed
signal.

Using a CMP and SRs to obtain multi-channel, one-bit data
reduces the implementation complexity of the sampling circuit and
the computational complexity of the DW test while preserving the
randomness of the mixed signal. In addition, multi-channel parallel

FIG. 1. Architecture of the proposed weak signal detection technique based on the
DW test and one-bit sampling.
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FIG. 2. Autocorrelation functions and power spectra of sampled WGN data: (a)
autocorrelation function of WGN sampled by a 16-bit ADC, (b) autocorrelation
function of WGN sampled by a one-bit ADC, (c) power spectrum of WGN sampled
by a 16-bit ADC, and (d) power spectrum of WGN sampled by a one-bit ADC.

computing reduces the data processing time, making the DWTM
easy to process the one-bit data in real-time.

A. One-bit sampling of mixed signals
The mixed analog signal can be sampled for randomness analy-

sis. Conventionally, an analog signal to be analyzed is sampled by
a high-resolution ADC and then processed through hardware or
software based digital signal processing techniques. However, for
weak signals submerged in strong noise, the sampling waveform
inevitably has significant distortion, so the resolution of the ADC
can be reduced to the limit of one-bit to decrease the computational
complexity. Nevertheless, the impact of one-bit sampling on the ran-
domness of mixed signals needs to be confirmed. Figure 2 shows the
autocorrelation functions and power spectra of WGN, sampled by a
16-bit ADC and by a one-bit ADC. It can be seen that after reducing
the resolution of the ADC from 16-bits to one-bit, the randomness of
the WGN is still effectively inherited by the sampled data. Therefore,
using a one-bit ADC to sample the mixed signal and conducting
a subsequent randomness analysis is feasible. Moreover, reducing
the bit-width of the data will assist in decreasing the computational
complexity of the DW test.

To implement a one-bit ADC, either an ADC chip or a
one-bit ADC composed of a CMP and a SR can be used.2,41 The
CMP and SRs based method simplifies the design of the circuit and
is, therefore, used in this article.

B. DW test based on one-bit data
As a typical method for detecting randomness of noise, the

DW test condenses the correlation information of a data sequence
into a concise number, i.e., the DW statistic. This method is
essentially based on the first-order autocorrelation coefficient of the
data sequence.35–37

Assuming that the one-bit data sequence of noise contains n
data points. The DW statistic is defined as35

DW = ∑
n
k=2 (ek − ek−1)2

∑n
k=1 ek

2 , (1)

where ek denotes the residual of the k-th one-bit data (k = 1, 2, . . .,
n),

ek = dk − d, (2)

where dk refers to the k-th one-bit data, and d represents the mean
value of the one-bit data sequence. As a comparison, the first-order
autocorrelation coefficient is defined as42

ρ = ∑
n
k=2 ekek−1

∑n
k=1 ek−1

2 , (3)

which means

DW ≈ 2(1 − ρ). (4)

As can be seen, if the one-bit data show randomness, the value of ρ
will tend to 0, and the DW statistic will tend to 2.42

The WGN is completely random and has no autocorrelation;
therefore, its DW statistic is approximately equal to 2. However, the
introduction of the weak signal disturbs the randomness of WGN,
resulting in the mixed signal having a first or higher order autocor-
relation. The manifestation is that the DW statistic deviates to some
extent from 2. Thus, it is feasible to identify the presence of a weak
signal and estimate its SNR by analyzing the degree of deviation from
2 of the DW statistics.

In the case of one-bit sampling, the calculation of the DW
statistic can be simplified. For the numerator part in Eq. (1),
there is

(ek − ek−1)2 = (dk − dk−1)2

=
⎧⎪⎪⎨⎪⎪⎩

1, dk ≠ dk−1

0, dk = dk−1

= dk ⊕ dk−1. (5)

Where x⊕ y means an XOR operation between x and y, easy to
implement in hardware. In addition, as there is dk

2 = dk in one-bit
sampling, the denominator part in Eq. (1) can be simplified as

n

∑
k=1

ek
2 =

n

∑
k=1
(dk − d)2

=
n

∑
k=1

dk
2 +

n

∑
k=1

d 2 − 2d
n

∑
k=1

dk

= nd + nd 2 − 2nd 2

= nd(1 − d). (6)

As a result, the value of∑n
k=1 ek

2 can be simply obtained by calculat-
ing the average value of dk, i.e., d. The reduction of computational
complexity facilitates the high speed and real-time implementation
in the hardware of the DW test.
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In order to describe the extent to which the randomness of the
noise is affected by the weak signal, an index is defined as

DWE = 2 −DW. (7)

It is obvious that

DWE ≈ 2ρ, (8)

i.e., DWE represents the first-order autocorrelation of the noise.
When the weak signal has a detectable SNR, the DWE will deviate
from 0 and provide information for SNR estimation.

C. Simulation of the proposed technique
It is evident from Eq. (8) that there is a linear relationship

between the DWE and the first-order autocorrelation coefficient for
the mixed signal. Since there should be a linear relationship between
the first-order autocorrelation coefficient of the mixed signal and the
power of the weak signal, there should also be a linear relationship
between the DWE of the mixed signal and the power of the weak sig-
nal. As the SNR of a weak signal is linearly related to the logarithm
of its power, it can be expected that lg(DWE) will exhibit a linear
relationship with SNR.

To verify the relationship between the SNR and DWE, sim-
ulations using MATLAB were carried out on a mixed signal that
contains WGN and a weak sinusoidal or square-wave signal. The
sampling rate of the one-bit ADC was normalized to 1, and the nor-
malized repetition rate of the weak signal was within 0.5, i.e., within
the first Nyquist band. The mixed signal was compared to TH, which
was set to the mean value of WGN. The generated one-bit data were
used to calculate the DWE, with a data length of 2.18 The absolute
value of the mean of the DWE (DWEM) was obtained by averaging
10 000 DWEs and then taking the absolute value.

The detection of weak sinusoidal signals was simulated in
detail. The normalized frequencies of the weak sinusoidal signals
were 0.1, 0.2, 0.25, 0.3, and 0.4. The SNRs of the weak signals ranged
from −40 to 5 dB, with a step of 1 dB. The simulation results are
shown in Fig. 3. For sinusoidal signals with frequencies of 0.1, 0.2,
0.3, and 0.4, the relationship between lg(DWEM) and SNR shows
the expected linearity with the same slope of 0.1. Due to this, when
the SNR of a weak sinusoidal signal is above −30 dB, the weak sinu-
soidal signal is detectable, and the SNR or frequency can be evaluated
through the relationship between DWEM, frequency, and SNR.

The relationship between DWEM, frequency, and SNR in Fig. 3
can be written as follows:

log10(DWEM(Fre, SNR))
= log10(SIN_DWEM0(Fre)) + 0.1 × SNR, (9)

or

DWEM(Fre, SNR) = SIN_DWEM0(Fre) × 100.1×SNR, (10)

where Fre denotes the frequency of the weak sinusoidal signal, and
SIN_DWEM0 refers to the DWEM value when the SNR of a weak

FIG. 3. DWEM vs SNR of a weak sinusoidal signal at different frequencies.

FIG. 4. Diagram of using a one-bit ADC to sample a sinusoidal signal at the
normalized frequency of 0.25.

sinusoidal signal is 0 dB and is correlated with the weak sinusoidal
signal frequency.

It is worth noting that, as shown in Fig. 3, the proposed tech-
nique encounters difficulty in detecting a weak sinusoidal signal at
a frequency of 0.25. Further study reveals that, as shown in Fig. 4,
it is because when the weak sinusoidal signal of this frequency is
sampled, the one-bit sampled data happens to have second-order
autocorrelation and minimal first-order autocorrelation. Therefore,
due to one-bit sampling, the DW test, which is based on first-order
autocorrelation, cannot effectively detect weak sinusoidal signals at
a frequency of 0.25, even if the SNR is large.

In addition, it can be seen in Fig. 3 that a weak sinusoidal signal
with a frequency of 0.1 behaves almost identically to a weak sinu-
soidal signal with a frequency of 0.4, and this is also the case at
the frequencies of 0.2 and 0.3. To clarify the relationship between
DWEM and the frequency of the weak sinusoidal signal, DWEM vs
the frequency of the weak sinusoidal signal was simulated. The SNR
was 0 dB, and the frequency varied from 0.01 to 0.49, with a step of
0.01. The simulation result is shown in Fig. 5. It can be seen that the
curve is symmetrical around the frequency of 0.25, consistent with
the results shown in Fig. 3.

Furthermore, the curve in Fig. 5 can be well fitted using
quadratic functions. When 0 < Fre < 0.25, the DWEM corresponds
to the weak sinusoidal signal at an SNR of 0 dB is

SIN_DWEM0(Fre) = −1.3844(Fre)2 − 0.3226Fre + 0.1683, (11)
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FIG. 5. DWEM vs frequency of a weak sinusoidal signal when SNR is 0 dB.

and when 0.25 < Fre < 0.5, the equation can be written as

SIN_DWEM0(Fre) =− 1.3844(0.5 − Fre)2

− 0.3226(0.5 − Fre) + 0.1683⋅ (12)

In the situation of undersampling, Eqs. (11) and (12) are still effec-
tive, except that the frequency should be folded into the first Nyquist
band.

The detection of weak square-wave signals was also simulated
in detail. The simulation conditions for DWEM vs SNR were identi-
cal to those for weak sinusoidal signals in Fig. 3, with the exception
that square-wave signals were used instead of sinusoidal signals. The
simulation result is shown in Fig. 6. Compared to Fig. 3, the curves
of frequency at 0.1 and 0.4 are not coincident, and the curves of
frequency at 0.2 and 0.3 are not coincident either. The curve of
frequency at 0.25 maintains its characteristics.

FIG. 6. DWEM vs SNR of a weak square-wave signal at different frequencies.

FIG. 7. DWEM vs frequency of a weak square-wave signal when SNR is 0 dB.
(a) Simulation frequency interval is 1/100, and (b) simulation frequency interval is
1/90.

The reason for noncoincidence was further studied through
simulation. The relationship between DWEM and the frequency
of a weak square-wave signal was simulated. The SNR was 0 dB,
and the frequency swept in two directions: from 1/100 to 49/100
with a step of 1/100, and from 1/90 to 44/90 with a step of
1/90. Figure 7 shows that the deviations from the expected values
occur at the frequencies of 1/9, 1/5, 1/3, and 2/5, which meet the
coherent sampling condition. This reveals the impact of coherent
sampling on DWEM when the weak signal under detection is a
square-wave.

When the frequency of the weak square-wave signal is 0.25,
the one-bit sampled data of the square-wave signal resembles the
sinusoidal signal shown in Fig. 4, which mainly contains second-
order autocorrelation. Therefore, in Fig. 7, the DWEM value at
the frequency of 0.25 is also close to 0, similar to the situation in
Fig. 5.

The impact of coherent sampling on DWEM is further stud-
ied for weak square-wave signal detection. In cases of coherent
sampling, due to the certainty of sampling position in the wave-
form period, the first-order autocorrelation is enhanced for the
high-frequency square-wave signal. Similarly, for the low-frequency
square-wave signal, the high-order autocorrelation is strengthened,
which means the first-order autocorrelation is weakened. For exam-
ple, when a square-wave signal at a frequency of 1/5 is coherently
sampled, as shown in Fig. 8(a), the one-bit data are a repetition of
11 000 or 00 111, which mainly contains high-order autocorrelation,
resulting in a smaller than expected DWEM in Fig. 7. At the fre-
quency of 2/5, as shown in Fig. 8(b), the one-bit data are a repetition
of 11 010 or 00 101, which contains strong first-order autocorrela-
tion, resulting in a larger than expected DWEM in Fig. 7. However,
by sampling the same signal with three coprime sampling rates and
taking two of the closer DWEM results as valid results, the impact
of coherent sampling can be eliminated, as the coherent sampling
occurs between at most one sampling rate and the weak square-wave
signal.
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FIG. 8. Diagram of using a one-bit ADC to sample a square-wave signal at the
normalized frequency of (a) 1/5 and (b) 2/5.

After removing the coherent sampling points, the curve in
Fig. 7 can be well fitted as a linear curve composed of two seg-
ments. When 0 < Fre < 0.25, the DWEM corresponds to the weak
square-wave signal at 0 dB is

SQ_DWEM0(Fre) = −1.1709Fre + 0.2920, (13)

when 0.25 < Fre < 0.5,

SQ_DWEM0(Fre) = −1.1709(0.5 − Fre) + 0.2920, (14)

where SQ_DWEM0 represents the DWEM value of a weak square-
wave signal when SNR is 0 dB. In the situation of undersampling,
Eqs. (13) and (14) are still effective, except that the frequency
should be folded into the first Nyquist band. In addition, the rela-
tionship between DWEM, Fre, and SNR can also be described as
Eqs. (9) and (10), except that the SIN_DWEM0 should be replaced
by SQ_DWEM0.

Based on the simulations and analysis, the proposed technique
can be used to detect weak sinusoidal or square-wave signals. The
relationship between DWEM, Fre, and SNR further enables the
estimation of SNR or frequency for these two kinds of weak signals.

D. Interferences of noise bandwidth and CMP
threshold

In practical applications, the noise has a limited bandwidth, and
normally the threshold of CMP is not the same as the mean value of
noise. This may influence the performance of the proposed weak sig-
nal detection technique. The interference from them was simulated.
In the simulation of noise bandwidth interference, the sampling rate
of the one-bit ADC was normalized to 1, and the TH was set to be
equal to the mean value of noise. A WGN was filtered through a
first-order Butterworth filter to generate noise with limited band-
width; the bandwidth ranged from 0.5 to 1.5 with an increment
of 0.005. The simulation result of DWEM of noise vs noise band-
width is shown in Fig. 9. It is evident that a linear relationship exists
between the lg(DWEMnoise) and the bandwidth of the noise, which
can be described as

DWEMnoise = 10−2.717×BW+0.1256, (15)

FIG. 9. DWEM of noise vs noise bandwidth when the ADC sampling rate is
normalized to 1.

where BW denotes the ratio of the noise bandwidth to the ADC
sampling rate.

In Figs. 3 and 6, it can be seen that the proposed weak signal
detection technique requires the DWEM of the noise component to
not reach the same level as the DWEM of the weak signal mixed
with WGN. According to Eq. (15), this means the ratio of the noise
bandwidth to the ADC sampling rate should be large enough. Fortu-
nately, the interference of the noise bandwidth can be overcome by
reducing the ADC sampling rate when the noise bandwidth cannot
be increased.

The following is a simulation of the interference of the CMP
threshold with weak sinusoidal and square-wave signals. The sam-
pling rate of one-bit ADC was normalized to 1, and the frequency
of the weak signal was 0.21. The weak signal was mixed with WGN,
and the standard deviation of WGN was set to 1. The THs ranged
from −5 to 5 with a step of 0.1, and the SNRs of the weak signals

FIG. 10. DWEM vs TH of CMP in weak sinusoidal signal detection.
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TABLE I. Impact of the variation range of TH on DWEM in weak sinusoidal signal
detection when the signal frequency is 0.21 and the SNR is 0 dB.

∆TH ∆DWEM (%)

±0.1 0.41
±0.2 1.49
±0.5 8.94
±1 31.57

FIG. 11. DWEM vs TH of CMP in weak square-wave signal detection.

varied from −20 to 0 dB with a step of 10 dB. The simulation result of
DWEM vs TH of CMP in weak sinusoidal signal detection is shown
in Fig. 10. It can be seen that the interference of TH on the DWEM
of a weak sinusoidal signal increases as the SNR increases. When the
TH is greater than 4 or less than −4, the one-bit data will be almost
all 0 s or all 1 s, causing the DW to be unable to calculate and ren-
dering the detection technique ineffective. Typically, when the SNR
of a weak sinusoidal signal is 0 dB, the impact of the variation range
of TH on DWEM is shown in Table I. For different detection accu-
racy requirements, the range requirement of TH can be evaluated so
that TH variations have a sufficiently small effect on weak sinusoidal
signal detection.

Figure 11 shows the simulation results of DWEM vs TH of
CMP in weak square-wave signal detection. Compared with Fig. 10,
the simulation results of weak sinusoidal and square-wave signals

TABLE II. Impact of the variation range of TH on DWEM in weak square-wave signal
detection when the signal frequency is 0.21 and the SNR is 0 dB.

∆TH ∆DWEM (%)

±0.1 0.43
±0.2 1.70
±0.5 10.03
±1 34.62

are quite similar. When the SNR of a weak square-wave signal is
0 dB, the impact of the variation range of TH on DWEM can be
seen in Table II.

III. TEST RESULTS
A prototype was implemented to validate the proposed weak

signal detection technique based on the DW test and one-bit sam-
pling. Figure 12 displays the block diagram of the measurement
system. The sinusoidal signal was generated by a Rohde & Schwarz
RF signal source (SMB100A), the square-wave signal was generated
by a Tektronix arbitrary waveform generator (AFG3102C), and the
WGN with a bandwidth of 1.5 GHz was generated by a NoiseCom
noise source (UFX7110B). To control the SNR of the weak signal, a
step attenuator was utilized to attenuate the sinusoidal or square-
wave signal. In the prototype, the CMP (TLV3604DCKR43) was
used for quantization, and flip flops on an FPGA chip (XC7K325T-
2FFG900I44) were used for sampling. The sampling rate was set at
5 mega samples/s (Msps) to avoid interference with the bandwidth
limit of WGN. The DW test results from the FPGA were then sent
to a personal computer (PC) for SNR, or frequency estimation.

A test that uses the DWEM value to evaluate the SNR of the
weak sinusoidal or square-wave signal was performed. The fre-
quency of the weak signal was set to 600 kHz. The test result is shown
in Fig. 13. It can be seen that the weak signal can be detected with
the SNR above −30 dB. However, due to the non-ideal character of

FIG. 12. Block diagram of the measurement system.

FIG. 13. Test results of SNR estimation with the weak signal frequency of 600 kHz
and the sampling frequency of 5 Msps.
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FIG. 14. Corrected test results of SNR estimation with the weak signal frequency
of 600 kHz and the sampling frequency of 5 Msps.

the comparator and the deviation between the TH and noise mean
value, the measured SNR may deviate from the theoretical expec-
tations to some extent. The deviation can be simply calibrated and
corrected by multiplying the tested SNR by a correction coefficient,
i.e., the coefficient 0.1 in Eq. (9) is corrected. Figure 14 displays the
corrected results of the tested SNRs. As can be seen, the estima-
tion errors of SNRs of weak sinusoidal and square-wave signals are
within 2.5 dB.

To verify that the proposed technique has the ability to detect
the frequency of weak signals with known SNR, a frequency test was
implemented. The test frequency was from 0.3 to 2.4 MHz, with a
step of 0.3 MHz. The SNR of the weak signal was −10, −20, and −30
dB. The tested DWEM values were corrected as shown in Fig. 14.
The frequency test results of weak sinusoidal and square-wave
signals are shown in Fig. 15. It can be observed that the frequency

FIG. 15. Test results of frequency estimation with the SNR of (a) −10 dB, (b) −20
dB, and (c) −30 dB.

estimation is achievable by the proposed technique, and the esti-
mation error is smaller in the situation of higher SNR. It is worth
noting that the correction coefficient is related to the frequency of a
weak signal. For accurate detection of weak signals with frequency
variations over a large range, a series of tests can be conducted to
obtain frequency related correction coefficients. Thus, a more accu-
rate estimation of the SNR or frequency of the weak signal can be
achieved, as the correction coefficient is selected due to the estimated
frequency of the tested signal.

IV. CONCLUSION
In this article, a weak signal detection technique based on

the DW test and one-bit sampling is proposed. The weak periodic
signal is one-bit sampled using a CMP outside the FPGA and several
SRs inside the FPGA. The DW test is performed on the one-bit data
to detect weak sinusoidal or square-wave signals carried in the noise
and to estimate the SNR or frequency of the weak signal, depending
on the degree to which the randomness of the noise is affected. Sim-
ulation results demonstrate that the proposed technique can detect
weak signals above −30 dB. In addition, the relationship between the
DWEM, the frequency of the weak signals and the SNR is derived.
The interferences of coherent sampling, noise bandwidth, and CMP
threshold on the proposed technique are simulated and discussed.
In the measured results, weak sinusoidal and square-wave signals
above −30 dB are effectively detected, verifying the effectiveness of
the proposed weak signal detection technique.
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