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Abstract: Doppler lidar is an active laser remote sensing instrument. However, beam blockage
caused by low-altitude obstacles is a critical factor affecting the quality of lidar data. To
reconstruct the line of sight velocities (LOSV) in areas with beam blockages and to evaluate
the effectiveness of reconstruction results, the LOSV-filling network (LFnet) approach based
on generative adversarial networks (GANs) and an evaluation scheme based on the degree of
blockage are proposed in this paper. The LFnet comprises two adversarial models. The first
adversarial model captures the structural features of LOSV to output the edge map, and the
second adversarial fills in the blockage area using the edge map. We have built a packaged
dataset consisting of training, validation and test datasets with mask sets. Then the sensitivity
of the reconstruction effectiveness with different shielding conditions is studied, to reveal the
mechanism of shielding influencing the reconstruction. A series of indicators were used to
evaluate the model’s performance, including the traditional indicators and the proposed indicator
of root mean square error (RMSE). Finally, LFnet was demonstrated in a practical application in
an airport. The complete process of an easterly gust front is reconstructed with RMSE less than
0.85 m/s, which has significance for flight safety.
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1. Introduction

Coherent Doppler wind lidar (CDWL) is a remote sensing instrument with the advantages of
compact size and a high temporal-spatial resolution. It has been widely used in atmospheric
wind field detection [1,2], including atmospheric turbulence [3,4], wind gusts [5], wind shear
[6–10] and aircraft vortices [11]. However, the laser propagation is blocked by low-altitude
buildings, terrain, or other obstacles, resulting in a phenomenon known as beam blockage. The
lidar echo signals in these azimuths may be weakened or eliminated, affecting the product’s
quality. For example, lack of key line of sight velocities (LOSV) may lead to imprecise wind
shear identification [6]. Reconstruction of beam blockage is crucial to improve the quality of
CDWL detection data.

Research on beam blockage reconstruction primarily focuses on the application of weather
radars, with the method of high-resolution Digital Elevation Models(DEM) [12,13], spatial
correlation based methods [14] and deep learning-based methods [15]. The DEM is a digital data
model that describes the elevation information of the earth’s surface and calculates the power
loss in the received signal based on the geometrical relationship between radar beams and a
DEM. A new method for the mitigation of partial beam blockage, which uses the consistency
between the reflectivity factor Z and specific differential phase KDP and their radial integrals
in the rain, is presented by Zhang et al. [13].However, trees, buildings and other objects not
accounted for in the DEM may cause additional blockage. The radar signal processing utilizes a
spatial correlation-based identification algorithm to detect and identify obstacles encountered
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by radar beams during their propagation [14]. The algorithm’s fundamental premise is to
distinguish obstacle interference from signal noise by employing the spatial correlation of the
beams. It is dependent on adjacent radial echo and adjacent high-elevation echo data. Based on
Convolutional Neural Networks (CNNs), the reflectance factor ZH and differential reflectance ZDR
of the unobstructed area are employed to fill ZH and ZDR of the obstructed areas [15]. However,
the lack of actual observations has made it impossible to effectively quantitatively assess the
effectiveness of the correction, which remains a challenge.

In recent years, the rapid advancement of Artificial Intelligence (AI) has provided new
opportunities for the development of radar and lidar signal processing. AI techniques have been
applied to data assimilation [16], temporal-spatial wind field forecasting [17], nowcasting [18,19],
extrapolation radar echoes [20,21], wind energy resource exploration [22], and signal denoising
[23,24]. In addition to the multilayer neural network based method [15], some newly developed
AI models could also offer the possibility for blockage correction. Generative Adversarial
Networks (GANs) are a class of deep learning models proposed by Ian Goodfellow et. al. in
2014 [25]. GANs contain two parts: the Generator and the Discriminator. These two networks
compete with each other during training as a way to improve performance. As a result, GANs
can generate very high-quality data. GANs have been used in a variety of scenarios, including
generation of high-quality images, image inpainting and super-resolution [26]. Image inpainting
is the process of reconstructing missing parts of an image so that observers are unable to tell
that these regions have undergone restoration. This technique is often used to remove unwanted
objects from an image or to restore damaged portions of old photos. There are similarities
between these scenarios and the reconstructions for beam blockages.

A GANs based method in conjunction with CDWL data is applied to solve the issue of
beam blockages caused by low-altitude obstacles. This paper is organized as follows. Section
2 introduces the data sources and dataset construction. Section 3 presents the LOSV-filling
network (LFnet) architecture and evaluation indicators. Section 4 studies the sensitivity of
the reconstruction effectiveness with different shielding conditions and performs a practical
application in an airport. Finally, a conclusion is drawn in Section 5.

2. Data

2.1. Data sources

The raw data is sourced from a CDWL, which is applied to detect horizontal windshear at a
Guangzhou Baiyun International Airport (23°23′N,113°17′E). It is operated at a wavelength of
1.5 µm. The lidar supports multiple scanning modes, and the Plan Position Indicator (PPI) mode
is mainly applied. The elevation angles of PPI scanning are set as 3°, 4°, and 5°, respectively.
The scanning angle of the azimuth of each PPI is from 0° to 360°, with a step angle of 3°. The
period of one scanning is 1 minute, with a spatial resolution of 30 m. It’s noteworthy that at
elevation angles of 4° and 5°, the PPI scanning encounters no obstructions. At the elevation
angle of 3°, obstructions due to low-altitude buildings such as airport towers, terminals, and
fences exist, resulting in a lack of runway wind field detection data. In the experiment, data over
6 months is accumulated for this study.

2.2. Data preprocessing

The LOSV is obtained from the average Doppler shift of the power spectrum, using the maximum
likelihood method or Gaussian fitting method [27]. The sign of LOSV is defined as positive when
the movement is toward the lidar, and vice versa. The accuracy of the LOSV is determined by the
ratio between the echo signal and noise (SNR). To ensure data quality, an SNR filter is applied
to exclude wind data with low SNR. Considering the model’s high requirements for dataset
quality and the inherent attenuation of lidar signals with distance, the data within a range of 5000
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m is selected for constructing the datasets, including the training set, the test dataset, and the
validation dataset. The LOSV of these datasets should be complete, without any beam blockage.
Thus, the PPI scanning suffered by beam blockage is removed. The radial spatial resolution of
raw data is 30 m, while the angular resolution is 3°. The tangential spatial resolution increases
with distance, thus the image of LOSV at a certain resolution is output by interpolation. The
resolution of 256× 256 pixels is chosen by considering computational complexity and model size.
A total of 6940 PPI scanning with elevation angles of 4° and 5° is reserved. 70% of the dataset is
used to form the training dataset, 20% for the test dataset, and 10% for the validation dataset.

Due to the impact of obstacles on the atmospheric dynamics, the airwake as a turbulent airflow
will form around obstacles. When the obstacle is located at the upstream wind of the lidar, the
core area affected by the airwake is not within the reconstruction area, which does not affect the
reconstruction of the shielding area. However, when the obstacle is located the downstream of
the lidar and the wind direction is nearly parallel to the emitting laser as well, it is difficult for the
lidar to directly detect the core area of the airwake, resulting in the lack of training data for the
airwake. In this situation, the reconstruction quality for the core affected area of the airwake is
worse than that of the area far away from the airwake. Fortunately, this special situation is not
common, and the core area affected by the airwake is only a few range gates with a resolution of
30 m. As for situations with large shielding angles, the reconstruction effect is poor due to the
limited available edge information, even with a completed training set. Therefore, the impact of
obstacle airwake is not considered when building the training set.

3. Methods

3.1. Model network architecture design

The LFnet architecture is presented in Fig. 1. The adversarial model [25,28] of GAN is used in
this work. The generator is optimized with guidance from the discriminator, in the adversarial
learning process. The aim of optimizing GAN is to attain a Nash equilibrium between the
generator and discriminator. The process of optimizing GAN is similar to a min-max game
between the generator and discriminator. The process is given as:

min
G

max
D

V(D, G) = Ex∼pdata(x) [log D(x)] + EZ∼pz(z) [log(1 − D(G(z)))] (1)

where E represents the expectation about the distribution specified in the subscripts. D and G
respectively represent the discriminator and generator, x denotes the sample and Z symbolizes the
latent random vector of the generator. pdata(x) and pz(z) represent input original data distribution
and noise distribution. Generator1 (G1) and Discriminator1 (D1) are designed for the edge map
generation, and Generator2 (G2) and Discriminator2 (D1) are designed for the reconstructed
LOSV generation. The procedures of the LFnet are described as follows.

Step1, input grayscale image and input mask map for G1 are prepared. The input grayscale
image is grey-processed from the initial unreconstructed LOSV wind image. The mask map
represents the shielding areas corresponding to the grayscale image. The mask map specifics the
area that needs to be reconstructed. Various blockage scenarios are covered by these masks with
adjusting shielding angles and ratios. In total, 360 masks were obtained for the training process.

Step2, output edge map, which captures the details of structural features of the LOSV, is
obtained by G1 and D1. The adversarial process begins with a grayscale image with dimensions
of H×W (Height×Width, 256× 256 pixels) along with a corresponding mask map. The data
undergoes a sequence of dilated convolutional layers and residual blocks, which includes a
pair of down-sampling encoders, eight residual blocks, and up-sampling decoders, resulting
reconstructed feature-enhanced image with their original size. The feature-enhanced image is
the edge map sent to D1. D1 assumes responsibility for determining the real or fake of the edge
map produced by G1 and conversely guiding G1 to improve the quality of the edge map through
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where E  represents the expectation about the distribution specified in the subscripts. 𝐿 
represents the final convolution layer of the discriminator, and 𝑁𝑖 represents the number of 
elements in the activation layer. 𝐷1 utilizes a 70×70 pixels patch GAN architecture to identify 
the authenticity of overlapping image patches of 70×70 in size.

Step3, the output reconstructed LOSV is obtained by 𝐺2 and 𝐷2. The unreconstructed 
LOSV and edge map is sent to 𝐺2. 𝐺2 bears resemblance to 𝐺1 structure as its main objective 
is to refine the structural features of the unconstructed LOSV to enhance the precision of the 
wind field data. The final output of this process is a 256×256 pixels reconstructed LOSV image 
that has been optimized to better reflect the observed data.

Fig. 1. The framework of the LFnet. 𝐺1 captures the structural features of the grayscale and 
outputs the edge map of the masked area. 𝐺2 adjusts the structural features of the unreconstructed 
LOSV by edge maps and outputs reconstructed LOSV.

The LFnet is developed in the PyTorch framework. The training process started with the 
use of LOSV images as training data with a batch sample size of 8 to improve the efficiency of 
the process. The Adam optimizer[29] as one of the mainstream optimizers is employed as the 
training algorithm, allowing the learning rate to be automatically adjusted, thus enhancing the 
performance of the model. To stabilize the GAN training, spectral normalization (SN)[30], a 
weight normalization technique, is applied to the generator and discriminator[31]. Spectral 
normalization is chosen to save training time[28]. During the using of the Adam optimizer, the 
momentum term is stopped and only the RMSprop term is used. This means that it will behave 
exactly like the RMSprop optimizer. The learning rate of the discriminator is one-tenth of the 
learning rate of the generator. The initial learning rate of generators 𝐺1 and 𝐺2 is set to 10―4, 
to fast convergence. When the loss values reached a plateau value, the learning rate is reduced 
to 10―5, and the training persisted until a new convergence is achieved. In the final tuning 
phase, discriminator 𝐷1 is removed, and both 𝐺1 and 𝐺2 are further trained at a reduced learning 
rate of 10―6 until the final convergence is confirmed.

3.2 Image Quality Evaluation Indicators

Evaluating image quality has always been a critical issue in computer vision. Various indicators 
have been proposed, such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index 
(SSIM) and Learned Perceptual Image Patch Similarity (LPIPS). PSNR was originally 
introduced by Shannon [32]. It is widely used to evaluate the quality of image or video 
compression. The calculation of PSNR involves taking the logarithm of the ratio of the peak 
signal to the mean squared error between the input signal and the compressed output signal. 
The PSNR is given by,

Fig. 1. The framework of the LFnet. G1 captures the structural features of the grayscale
and outputs the edge map of the masked area. G2 adjusts the structural features of the
unreconstructed LOSV by edge maps and outputs reconstructed LOSV.

feature matching. The feature matching loss LFM is defined as

LFM = E

[︄
L∑︂

i=1

1
Ni

| |D(i)
1 (Cgt) − D(i)

1 (Cpred)| |

1

]︄
(2)

where E represents the expectation about the distribution specified in the subscripts. L represents
the final convolution layer of the discriminator, and Ni represents the number of elements in the
activation layer. D1 utilizes a 70× 70 pixels patch GAN architecture to identify the authenticity
of overlapping image patches of 70× 70 in size.

Step3, the output reconstructed LOSV is obtained by G2 and D2. The unreconstructed LOSV
and edge map is sent to G2. G2 bears resemblance to G1 structure as its main objective is to
refine the structural features of the unconstructed LOSV to enhance the precision of the wind
field data. The final output of this process is a 256× 256 pixels reconstructed LOSV image that
has been optimized to better reflect the observed data.

The LFnet is developed in the PyTorch framework. The training process started with the
use of LOSV images as training data with a batch sample size of 8 to improve the efficiency
of the process. The Adam optimizer [29] as one of the mainstream optimizers is employed as
the training algorithm, allowing the learning rate to be automatically adjusted, thus enhancing
the performance of the model. To stabilize the GAN training, spectral normalization (SN) [30],
a weight normalization technique, is applied to the generator and discriminator [31]. Spectral
normalization is chosen to save training time [28]. During the using of the Adam optimizer, the
momentum term is stopped and only the RMSprop term is used. This means that it will behave
exactly like the RMSprop optimizer. The learning rate of the discriminator is one-tenth of the
learning rate of the generator. The initial learning rate of generators G1 and G2 is set to 10−4, to
fast convergence. When the loss values reached a plateau value, the learning rate is reduced to
10−5, and the training persisted until a new convergence is achieved. In the final tuning phase,
discriminator D1 is removed, and both G1 and G2 are further trained at a reduced learning rate of
10−6 until the final convergence is confirmed.

3.2. Image quality evaluation indicators

Evaluating image quality has always been a critical issue in computer vision. Various indicators
have been proposed, such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
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(SSIM) and Learned Perceptual Image Patch Similarity (LPIPS). PSNR was originally introduced
by Shannon [32]. It is widely used to evaluate the quality of image or video compression. The
calculation of PSNR involves taking the logarithm of the ratio of the peak signal to the mean
squared error between the input signal and the compressed output signal. The PSNR is given by,

PSNR = 10log10

(︃
aMAX

2

MSE

)︃
(3)

where MSE represent the mean-square error between the original and compressed signals, and
aMAX represent the maximum possible signal. However, PSNR can only quantify the average
value of distortion, not considering localized cases of distortion.

The SSIM incorporates factors such as luminance, contrast and structure, aiming to compare
the structural similarity between two images [33]. The SSIM is given by,

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ

2
x + σ

2
y + c2)

(4)

where µx, µy are the average pixel values and σx, σy, σxy are the variances and covariance of the
images, respectively.

Furthermore, to evaluate the performance of GANs in image generation, the LPIPS is introduced
by Richard Zhang [34]. LPIPS is a metric used to measure the perceptual similarity between two
images. Unlike traditional PSNR and SSIM, LPIPS is learned through deep learning methods to
better simulate human visual perception. The formula of LPIPS is not a simple mathematical
formula but is implemented through deep neural networks. Typically, the LPIPS model uses
two images as inputs and then outputs a perceptual similarity score between them. The specific
architecture and parameters of the LPIPS model are obtained through large-scale training to
capture the perceptual information of the images. The computation of LPIPS in this paper is
done based on Python’s lpips library. The LPIPS is given by,

d(x, x0) =
∑︂

l

1
HlWl

∑︂
h,w

| |ωl ⊙ (ŷl
hw − ŷl

0hw)| |
2

2

(5)

To obtain the d between reference and distorted patches x, x0 with network F , feature stack
is extracted from L layers and unit-normalize in the channel dimension, which are designated
as ŷl, ŷl

0∈ R
Hl×Wl×Cl for layer l. The activations channel-wise is scaled by vector wl ∈ RCl and

computed with the ℓ2 distance.
These traditional indicators are effective for conventional image processing applications, but

they are not sufficient for evaluating the specific values of reconstructed lidar products. To solve
this problem, a method for quantitative evaluation of reconstruction results is proposed, as shown
in Fig. 2.

The reconstructed output is in the form of an image, which is characterized by the three
numerical values of tricolor (RGB) ranging from 0 to 255. The color bar is divided into 256
parts, and each part corresponds to a specific LOSV value. Therefore, the output LOSV value of
each grid point can be obtained by matching with the RGB of the color bar. The RGB difference
between grid points and color bar (dij) can be calculated as,

di,j,k =

√︂
(Rk − ri,j)

2 + (Gk − gi,j)
2 + (Bk − bi,j)

2 (6)

where (ri,j, gi,j, bi,j) and (Rk, Gk, Bk) represent the (i, j) grid point of the reconstructed area and
the kth color of the color bar, respectively. For each grid point, the index of k is determined,
when the di,j,k reaches its minimum value. The index k is then matched with a color bar to get the
specific LOSV value of the grid point (i, j).
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where MSE represent the mean-square error between the original and compressed signals, and 
𝑎𝑀𝐴𝑋 represent the maximum possible signal. However, PSNR can only quantify the average 
value of distortion, not considering localized cases of distortion.

The SSIM incorporates factors such as luminance, contrast and structure, aiming to compare 
the structural similarity between two images[33]. The SSIM is given by,
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where 𝜇𝑥,𝜇𝑦 are the average pixel values and 𝜎𝑥, 𝜎𝑦, 𝜎𝑥𝑦 are the variances and covariance of 
the images, respectively.

Furthermore, to evaluate the performance of GANs in image generation, the LPIPS is 
introduced by Richard Zhang[34]. LPIPS is a metric used to measure the perceptual similarity 
between two images. Unlike traditional PSNR and SSIM, LPIPS is learned through deep 
learning methods to better simulate human visual perception. The formula of LPIPS is not a 
simple mathematical formula but is implemented through deep neural networks. Typically, the 
LPIPS model uses two images as inputs and then outputs a perceptual similarity score between 
them. The specific architecture and parameters of the LPIPS model are obtained through large-
scale training to capture the perceptual information of the images. The computation of LPIPS 
in this paper is done based on Python's lpips library. The LPIPS is given by,

 
2

0
, 2
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l h wl l
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To obtain the 𝑑 between reference and distorted patches 𝑥, 𝑥0 with network ℱ, feature stack 
is extracted from 𝐿 layers and unit-normalize in the channel dimension, which are designated 
as 𝑦𝑙, 𝑦𝑙

0∈ ℝ𝐻𝑙×𝑊𝑙×𝐶𝑙 for layer 𝑙. The activations channel-wise is scaled by vector 𝑤𝑙 ∈ ℝ𝐶𝑙 
and computed with the 𝓁2 distance. 

These traditional indicators are effective for conventional image processing applications, 
but they are not sufficient for evaluating the specific values of reconstructed lidar products. To 
solve this problem, a method for quantitative evaluation of reconstruction results is proposed, 
as shown in Fig. 2. 

Fig. 2. The algorithm diagram for the inversion of specific LOSV values from the output image. 
The argmin is a function that retrieves the minimum value and returns the index.Fig. 2. The algorithm diagram for the inversion of specific LOSV values from the output

image. The argmin is a function that retrieves the minimum value and returns the index.

The corresponding relationship between specific speed values and RGB of the output image
is established. Based on this, in addition to perceptual indicators of PSNR, SSIM and LPIPS,
prediction-specific indicators of Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) are considered to evaluate the accuracy of output LOSV. MAE is given by:

MAE =
1
n

n∑︂
i=1

|yi
LFnet − yi

Real | (7)

where yReal and yLFnet represent the RGB value of LOSV without beam blockage and the RGB
value of reconstructed LOSV, n is the number of grid points. RMSE is given by:

RMSE =

⌜⎷
1
n

n∑︂
i=1

(viLFnet − viReal)
2 (8)

where vReal
i and vLFnet

i represent the LOSV without beam blockage and the reconstructed LOSV,
n is the number of grid points.

4. Result

4.1. Sensitivity analysis

This section focuses on assessing the effectiveness of the LFnet. The obstruction degree of the
lidar signal by low-altitude obstacles depends on the radial and tangential obstruction ranges.
The reconstruction effectiveness of different shielding angles and shielding ratios is assessed
and analyzed. The test dataset is used instead of the training dataset. It consists of 1476 LOSV
sets. Each wind set contains various blockage scenarios of mask maps with different shielding
angles and shielding ratios. The shielding angle usually quantifies the degree of blockage in the
tangential direction, which refers to the azimuth range of the blockage due to the low-altitude
obstacles. In general, the obstruction has a greater impact on detection with a larger shielding
angle. The shielding ratio is defined as the ratio of obstructed distance to the total distance in the
radial direction. The higher the shielding ratio, the closer the obstruct is to the lidar, with the
higher the degree of shielding.

To estimate the influence of the shielding angle on the LFnet’s reconstruction performance,
blockage reconstruction experiments were conducted at several shielding angles, including 5°,
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15°, 20°, 30°, 35°, 40° and 50°, with a constant shielding ratio 100%. Output reconstruction
results from different shielding angles are presented in Fig. 3.integrity declines, with some structural features of the LOSV partially lost, as depicted in Fig. 
3.

Fig. 3. Reconstruction effect of beam blockage under different shielding angles. The black 
dashed area is reconstructed. For each set, the bigger pictures on the left showcase the LOSV 
without beam blockage, and the first and second rows display the artificially blocked LOSV and 
the reconstructed LOSV.

For evaluation of the beam blockage reconstruction experiments based on the LFnet, a range 
of indicators including PSNR, SSIM, LPIPS, MAE and RMSE are listed in Table 1. The 
standard deviations (SD) and the relative changes (RC) of these indicators are used to better 
compare different indicators and provide insight into the variability of reconstruction 
performance. The results of indicators are calculated based on the 1476 LOSV sets. 

Table 1. The indicators of different shielding angles. 

Indicator 5° 10° 20° 30° 40° 50°

Mean 41.528 35.069 28.6395 21.3065 18.8303 18
SD 1.5269 1.354 1.9702 2.5883 2.55 2.4674

PSNR

RC 0.00% -15.55% -31.04% -48.69% -54.66% -56.66%
Mean 0.9991 0.9963 0.9865 0.9348 0.9031 0.8856
SD 0.0244 0.0239 0.0234 0.0231 0.0229 0.0232

SSIM

RC 0.00% -0.28% -1.26% -6.44% -9.61% -11.36%
Mean 0.006 0.007 0.0098 0.0154 0.0226 0.0316
SD 0.0017 0.0021 0.0033 0.0067 0.0094 0.0112

LPIPS

RC 0.00% 16.67% 63.33% 156.67% 276.67% 426.67%
Mean 0.0015 0.0027 0.0054 0.0131 0.0194 0.0229
SD 0.0003 0.0004 0.0009 0.0021 0.0034 0.0042

MAE

RC 0.00% 80.00% 260.00% 773.33% 1193.33% 1426.67%
Mean 0.5118 0.7333 0.9736 1.3335 1.7192 2.0614RMSE
RC 0.00% 43.28% 90.23% 160.55% 235.91% 302.77%

Fig. 3. Reconstruction effect of beam blockage under different shielding angles. The black
dashed area is reconstructed. For each set, the bigger pictures on the left showcase the LOSV
without beam blockage, and the first and second rows display the artificially blocked LOSV
and the reconstructed LOSV.

Three typical LOSV sets are showcased. Figure 3(a) shows the uniform wind field. Figure 3(b)
shows the wind field with windshear in the radial direction. Figure 3(c) shows the wind field
with a gust front in the west. For each set, the bigger image on the left showcases the LOSV
without beam blockage. The first and second rows display the artificially blocked LOSV and
the reconstructed LOSV, respectively. The reconstructed LOSV matches well with the LOSV
without beam blockage in small shielding angles. However, as the shielding angle increases,
the reconstruction results in the far field will deteriorate, and the reconstructed area’s integrity
declines, with some structural features of the LOSV partially lost, as depicted in Fig. 3.

For evaluation of the beam blockage reconstruction experiments based on the LFnet, a range of
indicators including PSNR, SSIM, LPIPS, MAE and RMSE are listed in Table 1. The standard
deviations (SD) and the relative changes (RC) of these indicators are used to better compare
different indicators and provide insight into the variability of reconstruction performance. The
results of indicators are calculated based on the 1476 LOSV sets.

Among these, LPIPS, PSNR and SSIM are perceptual indicators, that simulate the human
eye’s intuitive perception to evaluate image quality. MAE and RMSE are predictive indicators,
measuring absolute error. As the shielding angle increases, the reconstruction effect deteriorates
and the RCs also increases. The RC of LPIPS, MAE and RMSE are much larger than those of
PSNR and SSIM. As the shielding angle increases, the standard deviation of PSNR and SSIM
does not change significantly, while the standard deviation of LPIPS and MAE increases and the
reconstruction performance deteriorates. This trend indicates that perceptual differences become
larger, implying a greater degree of distortion between the reconstructed LOSV and the LOSV
without beam blockage. The values of MAE, RMSE and LPIPS increase with a larger shielding
angle. A larger LPIPS value corresponds to weaker similarity between the LOSV without beam
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Table 1. The indicators of different shielding angles.

Indicator 5° 10° 20° 30° 40° 50°

PSNR
Mean 41.528 35.069 28.6395 21.3065 18.8303 18

SD 1.5269 1.354 1.9702 2.5883 2.55 2.4674

RC 0.00% −15.55% −31.04% −48.69% −54.66% −56.66%

SSIM
Mean 0.9991 0.9963 0.9865 0.9348 0.9031 0.8856

SD 0.0244 0.0239 0.0234 0.0231 0.0229 0.0232

RC 0.00% −0.28% −1.26% −6.44% −9.61% −11.36%

LPIPS
Mean 0.006 0.007 0.0098 0.0154 0.0226 0.0316

SD 0.0017 0.0021 0.0033 0.0067 0.0094 0.0112

RC 0.00% 16.67% 63.33% 156.67% 276.67% 426.67%

MAE
Mean 0.0015 0.0027 0.0054 0.0131 0.0194 0.0229

SD 0.0003 0.0004 0.0009 0.0021 0.0034 0.0042

RC 0.00% 80.00% 260.00% 773.33% 1193.33% 1426.67%

RMSE
Mean 0.5118 0.7333 0.9736 1.3335 1.7192 2.0614

RC 0.00% 43.28% 90.23% 160.55% 235.91% 302.77%

blockage and the reconstructed LOSV. The MAE and RMSE directly evaluate the specific error
values of the real LOSV and the reconstruction LOSV. All of these indicators prove that as the
shielding angle increases, the reconstruction effect will deteriorate.

Figure 4 shows the scatter density distribution and histograms of the reconstructed LOSV
compared to the LOSV without beam blockage, covering a series of shielding angles with 100%
of the shielding ratio. The RMSE and corresponding shielding angle are marked in each subplot.
The RMSE increases from 0.51 m/s to 2.06 m/s, as the shielding angle increases from 5° to 50°.
As shown in Fig. 4, with the shielding angle increasing, the reconstruction RMSE increases
and the histogram of the LOSV difference widens, which means reconstruction performance
deteriorates. Figure 4 also indicates that the error distribution is relatively uniform within the
LOSV range of -9 m/s to 9 m/s. It can be inferred that the error of the reconstruction result is
independent of the specific numerical value of LOSV.

In practical detection, beam blocking may occur at any position in the direction of laser
propagation. To further study the influence of the shielding ratio on LFnet’s reconstruction
performance, blockage reconstruction experiments were conducted at several shielding ratios,
including 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, with a constant shielding angle of 25°.
Output reconstruction results from different shielding ratios are presented in Fig. 5. Three typical
LOSV sets, similar to Fig. 3 are presented. Overall, the reconstructed LOSV matches well with
the LOSV without beam blockage in small shielding ratios.

In Fig. 5, the dashed line annular sector area represents the reconstruction result. As the
shielding ratio increases, the black annular sector area to be reconstructed increases, while the
available structural features information in the radial direction decreases. The reduction of
available structural features will increase the reconstruction error in the far field, especially in
the edge region. For example, when the shielding ratio is 10%, the velocity structure feature
at the edge is successfully reconstructed. However, when the shielding ratio reaches 80%, the
reconstructed LOSV at the edge tend to be inconsistent.

To evaluate the overall reconstruction effect, the evaluation indicators are listed in Table 2.
Consistent with the sensitivity experiment of shielding angles, the results of indicators are
calculated based on the 1476 LOSV sets. As the shielding ratio increases, the reconstruction
effect deteriorates and the RCs also increases. These results also support that the larger the
shielding ratio, the worse the overall reconstruction effect. A high shielding ratio corresponds to
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Among these, LPIPS, PSNR and SSIM are perceptual indicators, that simulate the human 
eye's intuitive perception to evaluate image quality. MAE and RMSE are predictive indicators, 
measuring absolute error. As the shielding angle increases, the reconstruction effect deteriorates 
and the RCs also increases. The RC of LPIPS, MAE and RMSE are much larger than those of 
PSNR and SSIM. As the shielding angle increases, the standard deviation of PSNR and SSIM 
does not change significantly, while the standard deviation of LPIPS and MAE increases and 
the reconstruction performance deteriorates. This trend indicates that perceptual differences 
become larger, implying a greater degree of distortion between the reconstructed LOSV and 
the LOSV without beam blockage. The values of MAE, RMSE and LPIPS increase with a 
larger shielding angle. A larger LPIPS value corresponds to weaker similarity between the 
LOSV without beam blockage and the reconstructed LOSV. The MAE and RMSE directly 
evaluate the specific error values of the real LOSV and the reconstruction LOSV. All of these 
indicators prove that as the shielding angle increases, the reconstruction effect will deteriorate. 

Figure 4 shows the scatter density distribution and histograms of the reconstructed LOSV 
compared to the LOSV without beam blockage, covering a series of shielding angles with 100% 
of the shielding ratio. The RMSE and corresponding shielding angle are marked in each subplot. 
The RMSE increases from 0.51 m/s to 2.06 m/s, as the shielding angle increases from 5° to 50°. 
As shown in Fig. 4, with the shielding angle increasing, the reconstruction RMSE increases and 
the histogram of the LOSV difference widens, which means reconstruction performance 
deteriorates. Figure 4 also indicates that the error distribution is relatively uniform within the 
LOSV range of -9 m/s to 9 m/s. It can be inferred that the error of the reconstruction result is 
independent of the specific numerical value of LOSV.

Fig. 4. Scatter plots and differences histograms between the LOSV without beam blockage and 
reconstructed LOSV with the differing shielding angle. 

In practical detection, beam blocking may occur at any position in the direction of laser 
propagation. To further study the influence of the shielding ratio on LFnet's reconstruction 
performance, blockage reconstruction experiments were conducted at several shielding ratios, 
including 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, with a constant shielding angle of 25°. 
Output reconstruction results from different shielding ratios are presented in Fig. 5. Three 
typical LOSV sets, similar to Fig. 3 are presented. Overall, the reconstructed LOSV matches 
well with the LOSV without beam blockage in small shielding ratios. 

In Fig. 5, the dashed line annular sector area represents the reconstruction result. As the 
shielding ratio increases, the black annular sector area to be reconstructed increases, while the 

Fig. 4. Scatter plots and differences histograms between the LOSV without beam blockage
and reconstructed LOSV with the differing shielding angle.

available structural features information in the radial direction decreases. The reduction of 
available structural features will increase the reconstruction error in the far field, especially in 
the edge region. For example, when the shielding ratio is 10%, the velocity structure feature at 
the edge is successfully reconstructed. However, when the shielding ratio reaches 80%, the 
reconstructed LOSV at the edge tend to be inconsistent.

Fig. 5. Reconstruction effect of beam blockage under different shielding ratios. The black dashed 
area is reconstructed. One of the bigger pictures on the left showcases the LOSV without beam 
blockage. The first and second rows in (a)-(c) display the artificially blocked LOSV and the 
reconstructed LOSV.

To evaluate the overall reconstruction effect, the evaluation indicators are listed in Table 2. 
Consistent with the sensitivity experiment of shielding angles, the results of indicators are 
calculated based on the 1476 LOSV sets. As the shielding ratio increases, the reconstruction 
effect deteriorates and the RCs also increases. These results also support that the larger the 
shielding ratio, the worse the overall reconstruction effect. A high shielding ratio corresponds 
to a larger area to be reconstructed with less available structural feature information, resulting 
in high difficulty in reconstruction and an increase in the reconstruction error. Specifically, 
RMSE increases from 1.18 m/s to 1.72 m/s, as the shielding ratio increases. In Table 1 and 
Table 2, as the shielding angle increases or shielding ratio increases, SD of indicators also 
increases, indicating the deterioration of reconstruction. However, SD of indicators in Table 1 
changes more significantly, compared with SD of indicators in Table 2. It means that the 
reconstruction performance is more sensitive to the shielding angle than shielding ratio. In 
summary, the reconstruction result in the low shielding ratio is better than that in the high 
shielding ratio.

Figure 6 shows the scatter density plot of the reconstructed LOSV compared to the LOSV 
without beam blockage, covering various shielding ratios with the shielding angle remaining 
fixed at 25°. The change in the histogram of the LOSV difference is not obvious, indicating 
that the reconstruction error is not sensitive to the shielding ratio. It is consistent with the change 
of RMSE. The LOSV without beam blockage and the reconstructed LOSV have good 
consistency and have limited variation with the shielding ratio. Under a small shielding angle 
condition, the contribution of shielding ratios to the accuracy of the reconstruction output is 
smaller, compared to the contribution of shielding angles to the RMSE.

Fig. 5. Reconstruction effect of beam blockage under different shielding ratios. The black
dashed area is reconstructed. One of the bigger pictures on the left showcases the LOSV
without beam blockage. The first and second rows in (a)-(c) display the artificially blocked
LOSV and the reconstructed LOSV.
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a larger area to be reconstructed with less available structural feature information, resulting in
high difficulty in reconstruction and an increase in the reconstruction error. Specifically, RMSE
increases from 1.18 m/s to 1.72 m/s, as the shielding ratio increases. In Table 1 and Table 2,
as the shielding angle increases or shielding ratio increases, SD of indicators also increases,
indicating the deterioration of reconstruction. However, SD of indicators in Table 1 changes
more significantly, compared with SD of indicators in Table 2. It means that the reconstruction
performance is more sensitive to the shielding angle than shielding ratio. In summary, the
reconstruction result in the low shielding ratio is better than that in the high shielding ratio.

Table 2. The indicators of different shielding ratios under 25° shielding angle.

Indicator 10% 20% 30% 40% 50% 60% 70% 80%

PSNR
Mean 32.5475 30.1413 29.8507 29.7087 29.5332 29.3709 29.2986 29.2408

SD 2.4673 2.4811 2.4829 2.5227 2.497 2.5394 2.6323 2.4932

RC 0.00% −7.39% −8.29% −8.72% −9.26% −9.76% −9.98% −10.16%

SSIM
Mean 0.9957 0.9928 0.9914 0.9912 0.9902 0.9892 0.989 0.9888

SD 0.0231 0.0231 0.0232 0.0231 0.0231 0.0236 0.0239 0.024

RC 0.00% −0.29% −0.43% −0.45% −0.55% −0.65% −0.67% −0.69%

LPIPS
Mean 0.0121 0.0119 0.0117 0.0113 0.011 0.0105 0.01 0.0094

SD 0.005 0.005 0.0049 0.0049 0.0046 0.0043 0.0041 0.0037

RC 0.00% −1.65% −3.31% −6.61% −9.09% −13.22% −17.36% −22.31%

MAE
Mean 0.0035 0.0045 0.005 0.0051 0.0054 0.0056 0.0057 0.0058

SD 0.0009 0.0009 0.0009 0.0009 0.0008 0.0009 0.0009 0.0009

RC 0.00% 28.57% 42.86% 45.71% 54.29% 60.00% 62.86% 65.71%

RMSE
Mean 1.1828 1.1942 1.219 1.2578 1.3187 1.3986 1.5443 1.7205

RC 0.00% 0.96% 3.06% 6.34% 11.49% 18.24% 30.56% 45.46%

Figure 6 shows the scatter density plot of the reconstructed LOSV compared to the LOSV
without beam blockage, covering various shielding ratios with the shielding angle remaining
fixed at 25°. The change in the histogram of the LOSV difference is not obvious, indicating that
the reconstruction error is not sensitive to the shielding ratio. It is consistent with the change of
RMSE. The LOSV without beam blockage and the reconstructed LOSV have good consistency
and have limited variation with the shielding ratio. Under a small shielding angle condition, the
contribution of shielding ratios to the accuracy of the reconstruction output is smaller, compared
to the contribution of shielding angles to the RMSE.

The reconstruction of shielding areas mainly utilizes the available structural features information
of adjacent areas. No matter what shape of small area of shielding area, in most cases there is
enough available structural features information, resulting a good reconstruction performance.
With the same large area, narrow shaped areas have more available structural features information
than that of flat areas, with a better reconstruction performance. Therefore, the reconstruction
effect depends on the shape of the area, which is determined by the shielding angle and
shielding ratio. To comprehensively investigate the impact of these two shielding conditions on
reconstruction performance, the sensitivity of the LFnet performance under different shielding
conditions is further explored. The shielding angle is from 5° to 60°, with a step of 5°. The
shielding ratio is from 10% to 90%, with a step of 10%. In a total of 108 different shielding
conditions are applied. The experimental data consists of 1476 LOSV with several mask datasets.
The RMSE under different shielding conditions is used to assess the quality of output results,
as shown in Fig. 7(a). Although an increase in both shielding angles and ratios can lead to
an increase in RMSE, the shielding angle is the dominant factor in the reconstruction error,
when the shielding angle is less than 25°. In the case of small shading angles, the correlation
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Table 2. The indicators of different shielding ratios under 25° shielding angle. 

Indicator 10% 20% 30% 40% 50% 60% 70% 80%

Mean 32.5475 30.1413 29.8507 29.7087 29.5332 29.3709 29.2986 29.2408
SD 2.4673 2.4811 2.4829 2.5227 2.497 2.5394 2.6323 2.4932

PSNR

RC 0.00% -7.39% -8.29% -8.72% -9.26% -9.76% -9.98% -10.16%
Mean 0.9957 0.9928 0.9914 0.9912 0.9902 0.9892 0.989 0.9888
SD 0.0231 0.0231 0.0232 0.0231 0.0231 0.0236 0.0239 0.024

SSIM

RC 0.00% -0.29% -0.43% -0.45% -0.55% -0.65% -0.67% -0.69%
Mean 0.0121 0.0119 0.0117 0.0113 0.011 0.0105 0.01 0.0094
SD 0.005 0.005 0.0049 0.0049 0.0046 0.0043 0.0041 0.0037

LPIPS

RC 0.00% -1.65% -3.31% -6.61% -9.09% -13.22% -17.36% -22.31%
Mean 0.0035 0.0045 0.005 0.0051 0.0054 0.0056 0.0057 0.0058
SD 0.0009 0.0009 0.0009 0.0009 0.0008 0.0009 0.0009 0.0009

MAE

RC 0.00% 28.57% 42.86% 45.71% 54.29% 60.00% 62.86% 65.71%
Mean 1.1828 1.1942 1.219 1.2578 1.3187 1.3986 1.5443 1.7205RMSE
RC 0.00% 0.96% 3.06% 6.34% 11.49% 18.24% 30.56% 45.46%

Fig. 6. Scatter plots and differences histograms between the LOSV without beam blockage and 
reconstructed LOSV with the differing shielding ratio.

The reconstruction of shielding areas mainly utilizes the available structural features 
information of adjacent areas. No matter what shape of small area of shielding area, in most 
cases there is enough available structural features information, resulting a good reconstruction 
performance. With the same large area, narrow shaped areas have more available structural 
features information than that of flat areas, with a better reconstruction performance. Therefore, 
the reconstruction effect depends on the shape of the area, which is determined by the shielding 
angle and shielding ratio. To comprehensively investigate the impact of these two shielding 
conditions on reconstruction performance, the sensitivity of the LFnet performance under 
different shielding conditions is further explored. The shielding angle is from 5° to 60°, with a 
step of 5°. The shielding ratio is from 10% to 90%, with a step of 10%. In a total of 108 different 
shielding conditions are applied. The experimental data consists of 1476 LOSV with several 

Fig. 6. Scatter plots and differences histograms between the LOSV without beam blockage
and reconstructed LOSV with the differing shielding ratio.

between the velocity structure features in the tangential direction on both sides is high, resulting
in less difficult reconstruction and insensitive to shielding ratios. The RMSE is less than 1 m/s
in different shielding ratios when the shielding angle is less than 25°. As the shielding angle
increases from 25°, the contribution of the shielding ratio to the reconstruction error begins to
increase. When the shielding angle is greater than 45°, the shielding ratio is the main contribution
to the reconstruction error. A large shielding angle corresponds to a large arc length, which leads
to less available structural feature information, causing deterioration of reconstruction results.

mask datasets. The RMSE under different shielding conditions is used to assess the quality of 
output results, as shown in Fig. 7(a). Although an increase in both shielding angles and ratios 
can lead to an increase in RMSE, the shielding angle is the dominant factor in the reconstruction 
error, when the shielding angle is less than 25°. In the case of small shading angles, the 
correlation between the velocity structure features in the tangential direction on both sides is 
high, resulting in less difficult reconstruction and insensitive to shielding ratios. The RMSE is 
less than 1 m/s in different shielding ratios when the shielding angle is less than 25°. As the 
shielding angle increases from 25°, the contribution of the shielding ratio to the reconstruction 
error begins to increase. When the shielding angle is greater than 45°, the shielding ratio is the 
main contribution to the reconstruction error. A large shielding angle corresponds to a large arc 
length, which leads to less available structural feature information, causing deterioration of 
reconstruction results.

Fig. 7. (a) RMSE under different shielding conditions, (b) Kernel density distribution of LPIPS 
and RMSE. The blue dotted line is the fitting function between RMSE and LPIPS fitting. The 
red solid line is the maximum probability density line.

Figure 7(b) depicts the kernel density distribution of LPIPS and RMSE under various 
shielding conditions. The red solid line illustrates the line of maximum probability density. The 
LPIPS captures the similarity between reconstructed and real LOSV, serving as a measurement 
of their resemblance. The LPIPS and RMSE have a clear correlation when the LPIPS is less 
than 0.012. As the LPIPS increases from 0.012, it shows a weak relationship between the LPIPS 
and RMSE. In practical applications with obstruction, evaluating the quality of reconstructed 
LOSV is a challenge due to the absence of real LOSV in shielding areas. Therefore, 
conventional evaluation indicators such as LPIPS are solely applicable to the validation set and 
cannot be extended to evaluate the performance of obstruction reconstruction in practical 
applications. Compared with LPIPS, the RMSE evaluation method proposed in this paper offers 
a direct assessment of the LFnet reconstruction performance. For the specified shielding angle 
and shielding ratio, the reconstruction overall error can be estimated by query with Fig. 7(a).

3.2 Application example

In the field experiment of the airport, the PPI scanning results with an elevation of 3° have 
several obstructions due to airport towers, terminals, and fences. To reconstruct the lacking 
wind field on the runway, the LFnet is applied to reconstruct the shielding area, as shown in 
Fig. 8. The actual detected LOSV after quality control and the corresponding mask of the 
shielding area are shown in Fig. 8(a) and Fig. 8(b). The actual detected LOSV and the mask are 
input into the LFnet, which outputs the reconstructed LOSV as shown in Fig.8(c). There typical 
wind fields are demonstrated with the LFnet, including wind fields with characteristics of 
windshear, turbulence, and gust front. The first row shows the reconstruction results of a wind 
shear event. At a distance of 2 km to the north of the lidar, the LOSV has increased from 2.5 
m/s to over 7 m/s. The second row reconstructs the non-uniform motion characteristics of 

Fig. 7. (a) RMSE under different shielding conditions. (b) Kernel density distribution of
LPIPS and RMSE. The blue dotted line is the fitting function between RMSE and LPIPS
fitting. The red solid line is the maximum probability density line.

Figure 7(b) depicts the kernel density distribution of LPIPS and RMSE under various shielding
conditions. The red solid line illustrates the line of maximum probability density. The LPIPS
captures the similarity between reconstructed and real LOSV, serving as a measurement of their
resemblance. The LPIPS and RMSE have a clear correlation when the LPIPS is less than 0.012.
As the LPIPS increases from 0.012, it shows a weak relationship between the LPIPS and RMSE.
In practical applications with obstruction, evaluating the quality of reconstructed LOSV is a
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challenge due to the absence of real LOSV in shielding areas. Therefore, conventional evaluation
indicators such as LPIPS are solely applicable to the validation set and cannot be extended to
evaluate the performance of obstruction reconstruction in practical applications. Compared with
LPIPS, the RMSE evaluation method proposed in this paper offers a direct assessment of the
LFnet reconstruction performance. For the specified shielding angle and shielding ratio, the
reconstruction overall error can be estimated by query with Fig. 7(a).

4.2. Application example

In the field experiment of the airport, the PPI scanning results with an elevation of 3° have several
obstructions due to airport towers, terminals, and fences. To reconstruct the lacking wind field
on the runway, the LFnet is applied to reconstruct the shielding area, as shown in Fig. 8. The
actual detected LOSV after quality control and the corresponding mask of the shielding area
are shown in Fig. 8(a) and Fig. 8(b). The actual detected LOSV and the mask are input into
the LFnet, which outputs the reconstructed LOSV as shown in Fig. 8(c). There typical wind
fields are demonstrated with the LFnet, including wind fields with characteristics of windshear,
turbulence, and gust front. The first row shows the reconstruction results of a wind shear event.
At a distance of 2 km to the north of the lidar, the LOSV has increased from 2.5 m/s to over 7 m/s.
The second row reconstructs the non-uniform motion characteristics of turbulence. The third row
represents a gust front process existing in west. Overall, the reconstruction results successfully
capture the speed structure in various wind farms.

turbulence. The third row represents a gust front process existing in west. Overall, the 
reconstruction results successfully capture the speed structure in various wind farms. 

The specific reconstruction performance is assessed with the proposed RMSE method, as 
shown in Table 3. There were four shielding areas, with shielding angles of 13.6°, 16.3°, 18.8° 
and 21.4°, corresponding to the shielding ratio of 69.1%, 85.1%, 87.5%, and 78.9%, 
respectively, which are marked as Ⅰ, Ⅱ, Ⅲ, and Ⅳ. Based on the shielding angle and shielding 
ratio, the RMSE of the four reconstruction areas can be estimated based on Fig. 7(a), which are 
0.68m/s, 0.78 m/s, 0.80 m/s and 0.85m/s, respectively. It can infer that the RMSE between the 
real LOSV and the reconstructed LOSV does not exceed 0.85m/s. 

Fig. 8. Reconstruction process. (a) the actual detected LOSV with beam blockage (b) the 
corresponding mask. (c) the reconstructed LOSV. The four shielding areas are Ⅰ, Ⅱ, Ⅲ, and Ⅳ.

Table 3. The RMSE of the four reconstruction areas

Shielding area Shielding angle Shielding ratio RMSE 

Ⅰ 13.6° 69.1% 0.68 m/s

Ⅱ 16.3° 85.1% 0.78 m/s

Ⅲ 18.8° 87.5% 0.80 m/s

Ⅳ 21.4° 78.9% 0.85 m/s

Figure 9 shows the continuous process of an easterly gust front, from 15:02 to 17:52 on 
December 27, 2022. The observed LOSV with the elevation angle of 3° are existing beam 
blockages, as shown in Fig. 9(a). The corresponding reconstruction LOSV output by LFnet is 
shown in Fig. 9(b). As the lidar elevation angle rises to 4°, the detected LOSV is complete 

Fig. 8. Reconstruction process. (a) Actual detected LOSV with beam blockage. (b) Cor-
responding mask. (c) Reconstructed LOSV. The four shielding areas are I, II, III, and
IV.

The specific reconstruction performance is assessed with the proposed RMSE method, as
shown in Table 3. There were four shielding areas, with shielding angles of 13.6°, 16.3°, 18.8°
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and 21.4°, corresponding to the shielding ratio of 69.1%, 85.1%, 87.5%, and 78.9%, respectively,
which are marked as I, II, III, and IV. Based on the shielding angle and shielding ratio, the RMSE
of the four reconstruction areas can be estimated based on Fig. 7(a), which are 0.68 m/s, 0.78
m/s, 0.80 m/s and 0.85 m/s, respectively. It can infer that the RMSE between the real LOSV and
the reconstructed LOSV does not exceed 0.85 m/s.

Table 3. The RMSE of the four reconstruction areas

Shielding area Shielding angle Shielding ratio RMSE

I 13.6° 69.1% 0.68 m/s

II 16.3° 85.1% 0.78 m/s

III 18.8° 87.5% 0.80 m/s

IV 21.4° 78.9% 0.85 m/s

Figure 9 shows the continuous process of an easterly gust front, from 15:02 to 17:52 on
December 27, 2022. The observed LOSV with the elevation angle of 3° are existing beam
blockages, as shown in Fig. 9(a). The corresponding reconstruction LOSV output by LFnet is
shown in Fig. 9(b). As the lidar elevation angle rises to 4°, the detected LOSV is complete without
beam blockage, which is set as the control LOSV set, as shown in Fig. 9(c). The reconstruction
LOSV well captured the process of a gust front. The captured features are very similar to the
control group, which verifies the effectiveness of the reconstruction results to some extent.

without beam blockage, which is set as the control LOSV set, as shown in Fig. 9(c). The 
reconstruction LOSV well captured the process of a gust front. The captured features are very 
similar to the control group, which verifies the effectiveness of the reconstruction results to 
some extent.

At 15:11, the wind field was stable with some turbulence, and an easterly gust front began 
to appear in the east. At 15:47, the gust front arrived above the lidar and towered over the west, 
with a maximum wind speed of 8 m/s. At 16:23, the gust front had already passed westward 
through the lidar, affecting the entire airport glide path. Under the influence of the gust front, 
it is easy to cause windshear and lead to aircraft requeuing. The angle between the glide path 
and the ground is about 3° in the landing process of a flight. Therefore, the reconstruction of 
the wind field at this elevation angle plays an indispensable role in ensuring the landing of the 
flight.

Fig. 9. Example of the evolution of a continuous wind field with an elevation angle of 3°. 
(a)observed LOSV with an elevation angle of 3° (b)reconstructed LOSV with an elevation angle 
of 3° (c)control LOSV without beam blockage with an elevation angle of 4°. The dashed box 
represents the reconstruction area.

5. Conclusion
This paper proposes the LFnet method aiming to solve the issues of beam blockage 
reconstruction and its quantitatively evaluation for CDWL detection. Firstly, the LOSV dataset 
for the LFnet is derived from field experiments conducted at an airport, with masks created to 
simulate shielding phenomena for the training of the LFnet. Subsequently, in the test set, the 
sensitivity of the reconstruction effectiveness with different shielding conditions is 
systematically analyzed. Results show that the available structural features information 
determines the reconstruction quality of the LFnet, and the amount of structural features 
information is determined by the shielding conditions. The increase in shielding angle and 
shielding ratio will lead to an increase in reconstruction error. The shielding angle affects the 
available tangential structural features, while the shielding ratio affects the radial feature 
information. At small shielding angles, tangential information is sufficient resulting in a good 
reconstruction performance. Whereas at large shielding angles, whose reconstruction relies on 
radial information, the shielding ratio is the dominant factor. 

One of the main challenges in the field of image reconstruction is evaluating the quality of 
the reconstruction, as traditional evaluation indicators like the LPIPS is limited to the validation 
set. However, the proposed RMSE evaluation method offers a direct assessment of the LFnet 

Fig. 9. Example of the evolution of a continuous wind field with an elevation angle of
3°. (a) Observed LOSV with an elevation angle of 3°. (b) Reconstructed LOSV with an
elevation angle of 3°. (c) Control LOSV without beam blockage with an elevation angle of
4°. The dashed box represents the reconstruction area.

At 15:11, the wind field was stable with some turbulence, and an easterly gust front began to
appear in the east. At 15:47, the gust front arrived above the lidar and towered over the west,
with a maximum wind speed of 8 m/s. At 16:23, the gust front had already passed westward
through the lidar, affecting the entire airport glide path. Under the influence of the gust front, it is
easy to cause windshear and lead to aircraft requeuing. The angle between the glide path and the
ground is about 3° in the landing process of a flight. Therefore, the reconstruction of the wind
field at this elevation angle plays an indispensable role in ensuring the landing of the flight.
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5. Conclusion

This paper proposes the LFnet method aiming to solve the issues of beam blockage reconstruction
and its quantitatively evaluation for CDWL detection. Firstly, the LOSV dataset for the LFnet is
derived from field experiments conducted at an airport, with masks created to simulate shielding
phenomena for the training of the LFnet. Subsequently, in the test set, the sensitivity of the
reconstruction effectiveness with different shielding conditions is systematically analyzed. Results
show that the available structural features information determines the reconstruction quality of the
LFnet, and the amount of structural features information is determined by the shielding conditions.
The increase in shielding angle and shielding ratio will lead to an increase in reconstruction
error. The shielding angle affects the available tangential structural features, while the shielding
ratio affects the radial feature information. At small shielding angles, tangential information is
sufficient resulting in a good reconstruction performance. Whereas at large shielding angles,
whose reconstruction relies on radial information, the shielding ratio is the dominant factor.

One of the main challenges in the field of image reconstruction is evaluating the quality of
the reconstruction, as traditional evaluation indicators like the LPIPS is limited to the validation
set. However, the proposed RMSE evaluation method offers a direct assessment of the LFnet
reconstruction performance. The reconstruction error can be estimated by query with the
relationship between RMSE and shielding condition without real value. In practical application,
this work has successfully reconstructed the complete process of an easterly gust front in the
airport, which provides a complete wind field for flight safety. This method is not only effective
for the LOSV reconstruction in CDWL, in the future, we will extend the method to other products
in lidar and radar, such as spectral width and echo intensity. Due to the limitations of the training
set, the LFnet is not applicable for reconstructing shielding areas within the core affected area
of the airwake. The impact of obstacle airwake is still an issue, which should be addressed. In
the future, we will apply computational fluid dynamics (CFD) technology to simulate obstacle
airwake and generate virtual lidar scanning data, to improve the reconstruction effect on obstacle
airwake areas.
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