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Characterization of Subpicosecond Pulses Based on
Temporal Interferometry With Real-Time Tracking of
Higher Order Dispersion and Optical Time Delay
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Abstract—In the complete reconstruction of ultrashort optical
pulses based on temporal interferometry, the chromatic dispersion
and the optical time delay are two key factors, which determine
the measurement accuracy. Due to the higher order dispersion,
the wavelength-to-time mapping becomes nonlinear, leading to a
nonuniformly spaced interference pattern and a decreased fringe
visibility in the time domain, even though the input pulse is trans-
form limited. On the other hand, an estimation of the time delay
difference with a minor deviation from the true value will result
in an artificial linear chirp in the reconstructed phase of the pulse
under test. In this paper, a rigorous mathematical analysis on the
nonlinear frequency-to-time mapping is performed, with which the
phenomena of a nonuniformly spaced interference pattern and a
decreased fringe visibility are explained. A frequency-to-time map-
ping function including higher order dispersion is developed. With
a general mapping function, using a transform-limited pulse as the
reference signal, we propose a method for real-time tracking of
the system parameters, including the chromatic dispersion corre-
sponding to all the optical devices incorporated in the system and
the time delay introduced by the interferometer. Finally, a com-
plete reconstruction of a 237 fs optical pulse is demonstrated ex-
perimentally with an average angular error of 0.18 rad ranging
from 190.65 to 193.85 THz.

Index Terms—Chromatic dispersion, phase reconstruction,
Sagnac-loop filter, subpicosecond, temporal interferometry.

1. INTRODUCTION

URING the past two decades, tremendous progress in ul-
D trashort optical pulse generation and its applications in
both fundamental and applied studies has created significant de-
mand for fast and accurate characterization of ultrashort optical
pulses [1]. Great efforts have been directed toward finding solu-
tions to retrieve the magnitude and phase information of an ul-
trashort pulse, with the approaches implemented based on spec-
trographic, tomographic, or interferometric analyses. A simple
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approach to characterizing an ultrafast pulse is to use optical
autocorrelation. The major limitation of the approach is that the
pulse shape information is needed, which is usually unknown,
making the characterization with low accuracy. In addition, a
specific second-order harmonic generation crystal is needed in
performing the autocorrelation, which makes the system com-
plicated and costly. Considering that the intensity of an ultra-
short pulse is always nonnegative, Peatross and Rundquist pro-
posed an iterative decorrelation algorithm that allows a com-
plete and accurate reconstruction of an optical pulse [2]. Since
the iterative algorithm is time consuming, the characterization
cannot be implemented in real time. The frequency-resolved
optical gating (FROG) [3] and the spectral phase interferom-
etry for direct electric-field reconstruction (SPIDER) [4] are two
other important techniques for pulse characterization. FROG is
a technique based on spectrographic analysis, in which an ul-
trashort pulse is characterized based on the information from
a spectrally resolved autocorrelation signal followed by an it-
erative phase-retrieval algorithm. A similar technique, known
as time-resolved optical gating (TROG), has also been reported
[5]. SPIDER is a technique based on self-referencing spectral
interferometry, which allows noniterative, thus fast reconstruc-
tion of an optical pulse by generating a spectral shear between
two replicas of the pulse to be characterized [6]. Since a fre-
quency-resolving free-space optical grating in FROG/TROG or
a frequency-shearing nonlinear material in SPIDER is needed,
these techniques are usually implemented in free space, thus
suffering from the problems such as phase-matching deviation,
spatial beam distortion, and poor focusability. General discus-
sions on techniques for ultrashort optical pulse characterization
can be found in [7], [8]. Readers may also refer to [9] for in-
formation about the state-of-the-art ultra-pulse characterization
systems.

Fortenberry et al. proposed a simple approach for complete
characterization of short optical pulses based on temporal inter-
ferometry (TI) [10], [11]. In the proposed system, an input pulse
under test (PUT) was sent to a dispersive element to stretch the
PUT until it is long enough to be detected using a high-speed
photodetector (PD). The temporally stretched optical pulse was
sent to an optical interferometer. The magnitude and phase in-
formation of the input pulse was then obtained by analyzing
the temporal interferogram at the output of the interferometer.
This method is similar to SPIDER in which an ultrashort pulse
is characterized based on self-referencing interferometry with
a noniterative algorithm, but with the capability of achieving a
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complete characterization of single-shot subpicosecond optical
pulses up to a repetition rate of hundreds of megahertz since the
interferogram is recorded in the time domain.

TI method has been reported for characterization of ultra-
short optical pulses using Fourier or Hilbert transformation al-
gorithms [12], [13]. In these works, as has been pointed out, the
frequency-to-time mapping process was assumed to be linear,
i.e., the time variable of the temporal interferogram is propor-
tional to the frequency of the spectral interferogram with a fixed
ratio given by the integral group velocity dispersion (GVD) of
the dispersive elements incorporated in the system. TI method
has also been reported to characterize the chromatic dispersion
of optical devices [14], [15]. The phase response of a device
under test was obtained by a simple and direct subtraction of
a reference phase, which is recorded by sending a same short
pulse while taking away the device under test.

The primary interest of this paper focuses on the theoretical
analysis of the effects of the higher order dispersion on the com-
plete characterization of subpicosecond optical pulses based on
TI. An accurate impulse response function associated with the
third-order dispersion (TOD) is developed strictly to explain the
decrease of the fringe visibility observed in the temporal inter-
ferogram. We point out that the higher order dispersion has been
underestimated in the previous literature. The temporal interfer-
ogram becomes nonuniform obviously when the pulsewidth is
narrow than one picosecond, even the pulse is transform limited.
In such a case, a nonlinear frequency-to-time mapping func-
tion that considers higher order dispersion is deduced theoret-
ically to explain these phenomena. Thanks to the advantage of
the TI method, the PUT and the transform-limited optical pulse
used as a reference can be recorded in one repetition interval
of the pulsed laser source. With the real-time tracking of the
system parameters, a complete characterization of the PUT is
performed accurately, although the system may suffer from the
environmental changes.

We would like to emphasize that the key difference of the
technique in this paper is that all order dispersion in the entire
system is considered in the time-to-frequency transform, while
in the previous work [12], only the GVD of the dispersive ele-
ment, such as a dispersion compensating fiber (DCF), is consid-
ered. In fact, the PUT experiences pulse stretching and compres-
sion in the entire system depending on the sign of the dispersion
of each optical element. An insufficient estimation of the chro-
matic dispersion associated with the entire system will introduce
errors to the reconstructed magnitude and phase of the PUT.

The remainder of the paper is organized as follows. In Sec-
tion II, we start with the nonlinear Schrodinger equation (NLSE)
to evaluate the maximum power that can be used to avoid non-
linear effects in the characterization system. Then, a theoretical
analysis is provided to describe the nonlinear frequency-to-time
mapping, with which the phenomena of nonuniformly spaced
interference pattern and a decreased fringe visibility are ex-
plained. In Section III, an experiment to characterize subpi-
cosecond optical pulses based on the developed nonlinear fre-
quency-to-time mapping is performed. A discussion on the sta-
bility and sensitivity of the proposed technique is presented in
Section IV. Finally, a conclusion is drawn in Section V.
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Fig. 1. Schematic diagram of the system for ultrashort optical pulse character-
ization. FSPL: femtosecond pulse laser; SMF: single-mode fiber; PC: polariza-
tion controller; OC: optical coupler; SLF: Sagnac-loop filter; PMF: polarization
maintaining fiber; PD: photodetector; OSC: oscilloscope; OSA: optical spec-
trum analyzer.
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II. PRINCIPLE

The schematic diagram of the system used for our analysis
and experiment is shown in Fig. 1. The system consists of a
femtosecond pulsed laser (FSPL) source, a dispersive element,
a Sagnac-loop filter (SLF), and a PD. A tunable optical attenu-
ator is incorporated after the FSPL to eliminate the nonlinearity
in the system. The dispersive element is a length of standard
single-mode fiber (SSMF). When a subpicosecond pulse is
transmitting through the SSMF, the pulse will be stretched in
time due to the chromatic dispersion of the fiber. Then, the
stretched pulse is sent to the SLF, which consists of a 3-dB
optical coupler, a polarization controller (PC), and a polar-
ization maintaining fiber (PMF). Two duplicated pulses with
a time delay difference introduced by the PMF are obtained
at the output of the SLF. The polarization state of the light
wave at one end of the PMF is rotated by the PC to make the
temporal interferogram have the largest visibility. The temporal
and spectral interferograms are recorded using an oscilloscope
(OSC) and an optical spectrum analyzer (OSA), respectively.

To eliminate the nonlinear effects, the peak power of the input
pulse should be controlled at a low level. Then, the SSMF can
be considered as a linear component. To quantitatively evaluate
the maximum power that can be used to make the nonlinearity
negligible in the system, we start our analysis from the NLSE.
A normalized NLSE is given as [16]

LOU _ sgn(pBs) o0%U iy 03U
"9~ 2 92 ' 6|Bua|Ty 013

—N2|U|?U exp(—a&Lyg)
)]

where { = z/Lq and 7 = (t — z/vg4) /Ty are two normalized
variables representing the propagation location along the SSMF
and the retarded time, respectively, T is the half-width at 1 /e in-
tensity point of the input pulse, v, is the group velocity, U (¢, 7)
is the normalized amplitude such that the amplitude of pulse
envelope is P, /2 exp(—aéLy/2)U, and P, is the peak power
of the input pulse. The GVD length Ly = T¢/|32|, the TOD
length L/, = T3 /| 35|, and the nonlinear length Lx1, = 1/vP
provide the length scale over which the dispersion and the non-
linear effects become important, where v = nowg/cAeg is the
nonlinear coefficient, ny is the nonlinear index, wq is the car-
rier frequency, and A.g is the effective core area. The ratio of
Lg to Lxt, gives the nonlinear factor N2 = yPyT¢/|32|. The
nonlinear fact IV should be small enough to avoid the nonlinear
effects. For example, for SSMF, we have 3o ~ —22 ps2 /kmn,
B3 ~ 0.13 ps®/km, and v ~ 1.2 W—'km™'. Given Ty ~
200 fs, then Ly = 1.8 m and L/, = 80 m. If N < 0.01, then the
peak power should be lower than 46 mW.
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Fig. 2. Investigation of the effects of higher order dispersion on the complete
reconstruction of ultrashort optical pulses based on TI. (a) The system is
modeled as a cascade of three subsystems having impulse responses of h (%),
hsvr(t), and ho(t) in the time domain. (b) The system is modeled as a cascade
of three subsystems having transfer functions of H>(w), Hspr(w), and H; (w)
in the frequency domain.

In addition, considering the GVD length L,; and the TOD
length L/, are comparable, we think the TOD is not negligible.
In the following discussion, we will perform an analysis consid-
ering the higher order dispersion.

Under the low-power assumption, the entire system is linear.
For this reason, the effects associated with different orders of
dispersion can be regarded as contributions from many cascaded
subsystems, and the entire system transfer function is the multi-
plication of the transfer functions associated with all these sub-
systems. In addition, the system transfer function is independent
of the orders of cascade due to the property of linear system.
For convenience, the orders of the subsystems are changed in
the following analyses.

The transfer function of an SSMF can be expressed by ex-
panding the mode-propagation constant /3 in a Taylor series [16]

H(w) = Hyexp <—j Z ﬂ;"Lw">
n=0 ’

where 3, is the nth order mode-propagation constant, Hy is a
constant which is unity if the loss of the fiber is ignored, w is the
angular frequency measured relative to the center frequency of
the pulse, and L is the length of the SSMF.

We first analyze a system consisting of three cascaded sub-
systems, as shown in Fig. 2(a). The first subsystem associated
with the dispersion up to the GVD has a transfer function given
by

@)

2 »
Hy(w) = Hyexp (—j Z %w" ) (3)
n=0 .

The impulse response h1 (t) is the inverse Fourier transform
of H;(w), which can be expressed as

hi(tg) = hoexp (jtr/20.L) )
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where tg = t — (1L is the time measured relative to the av-
erage time delay and hg = Ho(j27(2L) Y2 exp(—jfoL) is
the complex amplitude. The complex envelope a4 (t) under the
effect of the chromatic dispersion up to the GVD can be ex-
pressed as a convolution between the input ultrashort pulse ag(t)
and hq(¢)

ai(t) = / ag(t)hy (tr — ') dt/

=ho / ao(t') exp [j(tr — t')*/2B2L] dt’

= hg exp (Jt%/%@g[;)

oo

X /ao(t’)exp(jt'z/Z[J’gL)
X eXp(—jt/tR/Z,BQL)dtl. (5)

If the pulsewidth meet the condition that |T¢ /B2 L| < 1 i.e.,
L4 < L, then (5) can be well approximated by

(oo}

a1 (t) = hoexp (jt%z/2,32L) / ao(t') exp(—jt'tr /202 L)dt

=hgexp (jth/20:L) [Ao(W)]eztn /o1 (©)

where Ag(w) is the Fourier transformation of ao(t), with an
angular frequency given by w = tgr/f2L. Hence, under the
conditions of L; < L and low peak power, considering the
dispersion up to the GVD, the output pulse in the time domain
is analogous to its original spectrum with a scaling factor of
® = [,L [17]. This real-time optical spectrum analysis has
also been proposed by using a chirped fiber grating [18]. When
a linearly chirped fiber Bragg grating is used, the dispersion
ripples deviating from a designed chirp rate will be a deleterious
factor in the reconstruction of an ultrashort pulse.

The second subsystem associated with a two-tap SLF has an
impulse response function of

hsur(t) = [6(t) + 6(t +tp)] /2 @)

where 4(t) is the Dirac delta function, and ¢ is the time delay
difference between the two time-delayed replicas. The electrical
field of the signal at the output of the SLF is given by

GQ(t) = al(t) * hSLF (t) (8)

where * denotes the convolution operation. The electric current
of the PD can be written as

ia(t) = Raa(t) - as(t)
2
= % {146(@)P + |40(w + Aw)l?
+2[Ag(w)[ [Ao(w + Aw)
X cos [wtp + A@(W)]}wztR/ﬁzL ®)

where R is the responsivity of the PD, ao(t) is a complex con-
jugate of as(t), Aw = tp/Ba L is the corresponding frequency
shear due to the time delay difference, Ap(w) = p(w) — p(w+
Aw) is the relative phase between a pair of successive frequency
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components separated by Aw. If Aw is small enough, (9) can
be written as

io(t) = %ﬂ%|h0|210(w) {1+ coswtp + Ap(w)l}y /1
(10)
where Io(w) = |Ag(w)|? is the spectral intensity of the original
pulse. From (10), one can see that the temporal interferogram
carries the information of both the spectral intensity and the rel-
ative phase. If Ap(w) is a constant, then the temporal interfer-
ogram would have a constant period of T. = 2732 L/tp.
The third subsystem associated with the TOD has a transfer
function expressed by
Hy(w) = exp <—jﬁ3TLw3>. (11)
The impulse response hs(t) corresponding to H»(w) has been
expressed using the Airy function [19]. However, we perform an
inverse Fourier transform to Hs(w) directly by using the integral
table [20]. A close-form expression of ho(t) is then given by

m(t):% / Ho(w) exp(jwt)d

when t>0and #3>0 .

when t<0and B3 > 0
(12)

In deducing (12), the following two integrals are used.

0/COS
166
3a
)] (a>0,b>0)

%) cos(bz)dx

ol (8se) -
o

(13a)
/sm( 343 sin(ba)dx
0
2 /b
“5\3V3a
—? %<—\/i> (a>0,0>0)
(13b)

where J,,(z) and K,,(z) are the mth-order Bessel function of
the first kind and the mth-order modified Bessel function of the
second kind, respectively.
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Fig. 3. (a) Impulse response associated with the TOD shown on a logarithmic
scale and (b), (c), (d) partial views of the impulse response shown on a linear
scale.

With the parameters (33 = 0.13 ps®/km and L ~ 10.6 km
used in this paper, |h2(t)|? is calculated and compared with
Miyagi and Nishida’s work [19], as shown in Fig. 3. As can
be seen in Fig. 3(a), although the impulse responses associated
with the TOD for the two methods show good agreement in a
small time range from 1 to 100 ps, it is obvious that the damping
speed of the oscillations corresponding to (12) is much slower
than that of the impulse response function described in [19]. As
shown in Fig. 3(d), the long tail on the trailing side can even
extend to one nanosecond away with a normalized intensity of
0.035. This time scale is usually comparable to the period 7.
Considering the effect of the TOD, the final temporal interfero-
gram i3(t) is the convolution between i3 (t) and |ha(t)|?. Thus,
the fringe visibility of the temporal interferogram will decrease
obviously, as shown in Fig. 2(a). It is observed that the smaller
the T, the lower the fringe visibility of the temporal interfero-
gram, which will be shown in Figs. 5 and 6.

Since the impulse response associated with the TOD is asym-
metric, one can imagine that the period of the temporal interfer-
ogram will be modulated according to the property of the convo-
lution. To study the period change in the temporal interferogram,
we consider that the entire system consists of three cascaded
subsystems having transfer functions of H(w), Hsrr(w), and
H,(w), as shown in Fig. 2(b).

In the frequency domain, the interferogram recorded by an
OSA is the product of the pulse spectrum and the transfer func-
tion of the SLF

I(w) = Iy(w) [1 + cos(wip)]. (14)

This spectral interferogram carries no phase information of
the PUT.

On the other hand, the complex spectrum of the original pulse
can be written as Ag(w) exp[j¢(w)]. Then, under the effects of
TOD, the complex spectrum is

Ar(w) = Ao(w) exp [jp(w)] Ha(w)

= Ag(w) exp {j [p(w) — P1(w)]} (15)
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where ®1(w) = P3Lw?/6. The chromatic dispersion up to
GVD performs an optical Fourier transform as described by (6).
So, considering the dispersion up to the TOD, using (6) and (15),
the complex spectrum can be expressed as

@y (t) = ho exp (jti/262L) [A1(@)lmt /oL -

Using the same process as having been described from (6) to
(9), the final temporal interferogram can be expressed as

(16)

) 1
'Lg(t) = 53‘E|h0|210(w)
X {1 + cos [wtp + Ap(w) —

q>1(w)]}w=tR/,agL

For simplicity, we assume that the original pulse is nearly
transform limited, i.e., Ap(w) = 0. Then, the phase of the co-
sine term in (17) is

a7

¢ = [wip — AP (w)]

w=tr/B2L
oP
= |:th - MAW}
dw w=tg/B2L
_r, ﬂaL(tR >2 tp
“HLTT 2 \ L) Bl
=w'tp (18)
where the angular frequency is w' = (tgr/B2L) —

(B3Lt%/2(B2L)3). So, consider the TOD, the temporal
interferogram (17) is still analogous to the spectral interfero-
gram. But the time-to-frequency transform becomes nonlinear.
For example, for SSMF, we have D = 17 ps/km/nm, given
the spectral width of the origin pulse is 10 nm, then w’ changes
2.28% within the full-width at half-maximum (FWHM). So, in
a precise reconstruction of optical pulses that have a duration
narrower than one picosecond, the effect of the TOD is not
negligible.

Using the same process from (15) to (18), higher order dis-
persion can be considered, which yields a general form of the
angular frequency as a polynomial function of tp

/Bn tn 1
o 52L Z

(n—1)Y(B2L)
With the assumption of a transform-limited input pulse, the
current detected by the PD can be expressed as

19)

is(t) = %%|h0|210(w) [1+ cos(w'tp)]. (20)

From (14) and (20), one can see that, with an angular fre-
quency given by (19), the temporal interferogram is still analo-
gous to the spectral interferogram even under the effect of the
higher order dispersion. Thus, one can record the spectral in-
terferogram and the temporal interferogram simultaneously and
perform a polynomial fitting of the corresponding points on the
two interferograms to realize a complete tracking of the chro-
matic dispersion associated with the entire system.

III. EXPERIMENT

A femtosecond pulse generated by a passively mode-locked
fiber laser (IMRA Femtolite 780 Model B-4-FC-PD) is used in
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Fig. 4. Optical autocorrelation of the femtosecond laser pulse.
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Fig. 5. Interferograms (a) spectrum interference pattern record on the OSA;
(b) temporal interference pattern recorded on the OSC. ¢t , = 38.67 ps is used.

the experiment. To avoid nonlinear effects, first, we measure the
pulsewidth to evaluate the maximum input power. The inten-
sity profile is measured using an optical autocorrelator (Fem-
tochrome Model FR-103MN). The fiber laser and the optical
autocorrelator are connected using a fiber jumper with a length
of only 16 cm; so, the pulse stretching due to the fiber jumper is
negligible. The output from the autocorrelator is shown in Fig. 4.
The conversion of the FWHM of the autocorrelation trace AT’
to the FWHM of the pulse At is dependent on the pulse shape.
With a Gaussian shape assumption, we have At = \/§I€AT/ 2,
where k = 7.5 ps/ms is a calibration factor. Then, the FWHM
of the laser pulse is calculated to be 394 fs (Tp = 237 fs). So
the peak power should be lower than 33 mW according to the
analysis in Section II. When the input power is above this value,
the temporal interferogram and spectral interferogram are mea-
sured, as shown in Fig. 5. It is obvious that the profile varies from
the Gaussian shape into the hyperbolic secant shape, which in-
dicates that a nonlinear effect is resulted due to the self-phase
modulation [16]. Comparing the two interferograms in Fig. 5,
one can see a decrease in fringe visibility in the time domain,
which has been predicted in the earlier analysis. The ripple in
the spectral interferogram is due to the power fluctuations during
the scanning process of the OSA, which takes about 30 s.

To perform a complete characterization of an optical pulse,
the sampling interval should be narrow than the Nyquist limit.
According to the Whittaker—Shannon sampling theorem, since
the temporal interferogram has a period about 7, the sampling
frequency fs should satisfy the condition fs > 2/T, i.e., a
sampling of the spectrum at a frequency higher than ¢p /702 L
would be sufficient to reconstruct the amplitude and phase of
the pulse. According to (10), the spectral phase ¢(w) is obtained
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Fig. 6. Calibrated time-to-frequency mapping function. A fourth-order poly-
nomial fitting of the corresponding peaks in the time domain and the frequency
domain. tp = 12.54 ps is used. Under the effect of higher order dispersion,
the derived time-to-frequency conversion function (solid line) deviates from a
straight line (dot line) slightly.

by integrating A (w) over all the successive frequency compo-
nents separated by Aw within the whole spectrum. An experi-
ential evaluation of the spectral shear is Aw ~ 3%Wj, where
Wy is the spectral FWHM of the PUT. On the other hand, the
time delay difference ¢p should be large enough relative to the
pulsewidth Tj to perform the Fourier-transform algorithm, as
will be shown in Fig. 8(a). Finally, for a given bandwidth of the
receiver, the second-order dispersion 35 L. can be chosen to op-
timize the sensitivity of the system.

To carry out a complete reconstruction of a subpicosecond
pulse, we need to consider the effect of higher order dispersion.
To achieve this purpose, a polynomial frequency-to-time map-
ping function is used according to (19). In the following exper-
iment, the PD and the OSC both have a bandwidth of 50 GHz.
The pulse directly generated from the FSPL is nearly transform
limited, which allows a complete calibration of the higher order
dispersion in the entire system. The temporal interferogram ob-
tained from the OSC and the spectrum interferogram obtained
from the OSA are shown along the abscissa and the ordinate
in Fig. 6, respectively. The peak centers of the two patterns are
found using a single-peak fitting algorithm. A polynomial fitting
function considering higher order dispersion up to the fourth
order, which relates the corresponding peak centers of the two
patterns, is obtained [14]

f=ao+art+ (12t2 + a3t3 + (l4t4 21
where ag = 1942 x 10™, a; = —-7.934 x 107,
as = 7.519x10%7, a5 = 9.377%x 103, and ay = —1.105x 10%*
are the fitting parameters. One can retrieve the fiber parameters
by drawing a comparison between (19) and (21). For example,
a1 = 1/2n L, if the fiber length is known, the GVD param-
eter (3o can be calculated.

Instead of using only the GVD coefficient, (21) is used to
build the relation between the temporal interferogram and the
spectral interferogram in this paper. First, we use this nonlinear
mapping function to reconstruct the pulse generated from the
FSPL. Since the pulse has also been measured using an optical
autocorrelator, we can demonstrate the accuracy of the recon-
struction and see whether the original pulse is transform limited
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Fig. 7. (a) spectral interferogram transformed from the time domain to the fre-
quency domain and (b) the temporal interferogram recorded on the OSC. The
order of interference is numbered relative to the center peak.

or not. The nonlinear mapping function (21) incorporates higher
order dispersion associated with all optical components in the
system. In addition, with (21), we can perform a real detection
of the time delay difference ¢p, which will be discussed later in
this section.

The temporal interferogram recorded on the OSC is trans-
formed into the frequency domain using (21), as shown in Fig. 7.
For an easy comparison, the temporal interferogram is flipped
vertically in Fig. 7(b). Due to the higher order dispersion, one
can see the nonperiodic change in the time domain.

We employ the phase-retrieval algorithm [21] to reconstruct
the intensity and phase of the input ultrashort pulse. As the first
step, the spectral interferogram in Fig. 7(a) is inverse Fourier
transformed. The result is shown in Fig. 8(a). Then, the right
sideband in Fig. 8(a) is selected, which represents the interfer-
ence term in (9). The selected sideband is shifted by ¢ to the
origin, then Fourier transformed to retrieve the spectral inten-
sity and to calculate the spectral phase by integrating the rel-
ative phase at discrete frequencies, as shown in Fig. 8(b). As
the final step, the temporal intensity and phase of the original
pulse is obtained by calculating the inverse Fourier transform of
the spectrum in Fig. 8(b), with the result shown in Fig. 8(c). It
has been pointed out that the original pulses and the stretched
pulses have the same spectrum; thus, if the temporal resolution
of an OSC is not high enough to characterize the original pulses,
it would not be able to characterize the stretched pulses either
[12]. However, in this paper, the required sampling rate is de-
termined by the frequency of the temporal interferogram. In the
inverse Fourier transform as the last step, by adding zero values
at both sides of the spectrum in Fig. 8(b), we can improve the
sampling rate in the time domain. The reconstructed intensity
profile in the time domain is compared with the Gaussian in-
tensity profile measured using an optical autocorrelator, an ex-
cellent agreement is reached. The product of the temporal and
spectral widths (both measured as FWHM) is 0.433, which in-
dicates that the original pulse is nearly transform limited. To
show the impact of the higher order dispersion on the proposed
technique, we reconstruct the phase and the intensity profiles of
the ultrashort pulse using a linear fitting in the calibration pro-
cedure, i.e., only the GVD is considered. The result is shown in
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Fig. 8. (a) Intensity and phase of the inverse Fourier transform of the spectral
interferometric pattern. (b) Reconstructed spectral intensity and phase relative
to the frequency center of the input pulse at 192.31 THz. (c) Reconstructed tem-
poral intensity and phase of the input pulse. The reconstructed intensity profile
is compared with the estimated Gaussian profile based on optical autocorrela-
tion (solid curve). (d) Reconstructed temporal intensity and phase profiles of
the input pulse using a linear frequency-to-time conversion. The reconstructed
pulse is significantly broadened.

Fig. 8(d). As can be seen, the pulse is broadened. The broad-
ening is mainly due to the TOD, which has been predicted by
(12). Some jumps in the phase profile corresponding to the zero
intensity points are also observed. Obviously, without consid-
ering the effect of the higher order dispersion, the reconstructed
intensity profile of the PUT is significantly broadened with a
large characterization error. It is therefore important to take the
high-order dispersion into consideration in the reconstruction of
an ultrashort pulse.

To show the significance of the real-time tracking technique
proposed in this paper, we incorporate a 10.9 m SSMF into the
system by using two optical couplers, as shown in Fig. 9. As
pointed out earlier, during the reconstruction process an error es-
timation of the time delay difference ¢ p will result in an artificial
linear frequency chirp in the reconstructed phase of the PUT.
This problem can be solved by using an interferometer with a
feedback loop to minimize the time delay error [13]. However,
for an optical source has a megahertz repetition rate, the feed-
back loop can only improve the long-term stability. In this work,
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the FSPL has a repetition rate of 48.6 MHz and the pulses are
stretched to have a FWHM of 1.5 ns, as shown in Fig. 7(b). Thus,
we can record the transform-limited pulse and the PUT within
one repetition interval of the FSPL. A tunable delay line com-
posed of a pair of pigtailed fiber collimator and coupler is used
to avoid temporal overlap of the two object pulses. According
to (14), with a spectral interferogram obtained via a nonlinear
time-to-frequency transform from the time domain to the fre-
quency domain, as shown in Fig. 7(a), a real-time measurement
of tp is performed. The time delay difference is estimated to
have a value of 12.54 ps from Fig. 7(a). Then, the phase of the
pulse going through the additional fiber is retrieved and com-
pared with the phase calculated using the dispersion parameters
obtained based on the modulation phase shift method [22]. An
excellent agreement is achieved, as shown in Fig. 10(a). Due
to the higher order dispersion of the fiber, the phase response is
not symmetrical about the carrier frequency of the optical pulse.
The average error between the two measurements is 0.18 rad
for a spectral range from 190.65 to 193.85 THz, as shown in
Fig. 10(b).

IV. DISCUSSIONS

In this work, a long SSMF is used as a dispersive element,
which makes the system sensitive to the environmental changes.
To improve the system stability, a dispersive element with a
higher dispersion, such as a DCF or a linearly chirped fiber
Bragg grating, can be used. Since the length of a DCF or a
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linearly chirped fiber Bragg grating is much shorter, the sta-
bility would be significantly improved. The drift of the PC in the
SLF due to thermal or other environmental changes is another
factor that will affect the long-term stability of the system. Al-
though the all-fiber SLF can be well packaged to minimize the
impact from the environmental disturbance, the time delay dif-
ference may vary slowly due to the drift of the PC and the strain
and temperature-induced change in the PMF; thus, the real-time
tracking of the time delay difference in the proposed approach
is still important.

To characterize pulses in a high-repetition-rate pulse train, the
pulses after the frequency-to-time mapping should not overlap;
therefore, the system must have a finite dispersion. For a given
dispersion, the sensitivity of the proposed technique is deter-
mined by the SNR at the output of the PD. Since the system
is implemented using pure fiber-optic components, the system
loss is significantly reduced compared with a system based on
free-space optics. In addition, the use of a DCF as the dispersive
element would further improve the sensitivity since a shorter
DCEF is needed for a given dispersion, which has a lower at-
tenuation. In addition, the optical signal can be amplified by
Raman amplification in the DCF, which has been demonstrated
in [23]. We would like to point out that a low-power optical
signal could also be amplified before feeding to a pulse char-
acterization system based on FROG, SPIDER, or TROG tech-
niques. However, the phase response of the optical amplifier is
added to the PUT and it would be difficult to be subtracted from
the reconstructed phase. Furthermore, the pulse characteriza-
tion techniques, such as FROG, SPIDER, and TROG, are imple-
mented based on nonlinear optics, while the proposed technique
is based on linear optics [24]. Thus, for linear optics-based ap-
proach, a much lower power is needed to perform a complete
pulse reconstruction, which means a higher sensitivity can be
achieved using the TI technique.

A direct comparison among different techniques is usually
difficult, since the performance of a particular setup is deter-
mined by the parameters of the specific system. However, to
show the advantage of the TI technique, the sensitivity is eval-
uated here. For example, a rough evaluation of the sensitivity of
a FROG-based system for a single-shot, 800 nm, 100 fs pulse
from a regeneratively amplified or unamplified Ti: sapphire os-
cillator is about 0.01-1 p©J [4]. In this work, for the charac-
terization of a single-shot pulse from a passively mode-locked
fiber laser at a center wavelength of 1559 nm and a pulsewidth
of Ty = 100 fs, if N < 0.01, the peak power P, should be
lower than 183 mW; then, the pulse energy Ey = /7Py
is calculated to be 32.4 fJ, which is far below the energy re-
quired to achieve the nonlinear interaction used in the FROG
technique.

Finally, the polarization state of the pulses often encountered
in an optical telecommunication system is usually unknown be-
cause of the propagation-induced polarization rotation in optical
fibers [8]. Thus, most of the characterization systems based on
nonlinear optics should be complemented by polarization diver-
sity [25]. In the proposed technique, however, the intensity and
phase of the reconstructed ultrashort pulse are independent of
the polarization state of the PUT if the SLF works with two of
the channels at the orthogonal polarization states [26].
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V. CONCLUSION

The effect of higher order dispersion on the reconstruction of
subpicosecond optical pulses based on TI was investigated the-
oretically and experimentally. With the mathematical analyses,
the decrease in fringe visibility and the change in period in
the temporal interferogram due to the higher order dispersion
were explained. Instead of using a closed-loop control to im-
prove the stability of the optical interferometer, we proposed to
use a transform-limited pulse to perform a real-time tracking
of the system parameters, which allows a more precise recon-
struction of the PUT, especially for an ultrashort pulse train with
high repetition rate and low power. The entire characterization
process can be realized by a system to perform real-time data
acquisition and processing, which has high potential for prac-
tical implementations.

REFERENCES

[1] G.Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller,
“Frontiers in ultrashort pulse generation: Pushing the limits in linear
and nonlinear optics,” Science, vol. 286, no. 10, pp. 1507-1512, 1999.

[2] J. Peatross and A. Rundquist, “Temporal decorrelation of short laser
pulses,” J. Opt. Soc. Am. B, vol. 15, no. 1, pp. 216-222, 1998.

[3] R.Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krum-
biigel, and B. Richman, “Measuring ultrashort laser pulses in the time-
frequency domain using frequency-resolved optical gating,” Rev. Sci.
Instrum., vol. 68, no. 9, pp. 3277-3295, 1997.

[4] C.laconisandI. A. Walmsley, “Spectral phase interferometry for direct
electric-field reconstruction of ultrashort optical pulses,” Opt. Lett., vol.
23, no. 10, pp. 792-794, 1998.

[51 R. G. M. P. Koumans and A. Yariv, “Pulse characterization at 1.5 gm
using time-resolved optical gating based on dispersive propagation,”
IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 666—668, Jun. 2000.

[6] W.Kornelis, J. Biegert,J. W. G. Tisch, M. Nisoli, G. Sansone, C. Vozzi,
S. De Silvestri, and U. Keller, “Single-shot kilohertz characterization
of ultrashort pulses by spectral phase interferometry for direct electric-
field reconstruction,” Opt. Lett., vol. 28, no. 4, pp. 281-283, 2003.

[7] 1. A. Walmsley and V. Wong, “Characterization of the electric field
of ultrashort optical pulses,” J. Opt. Soc. Am. B, vol. 13, no. 11, pp.
2453-2463, 1996.

[8] C. Dorrer, “High-speed measurements for optical telecommunication

systems,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 4, pp.

843-858, Jul. 2006.

N. Savage, “Ultrashort pulse characterization,” Nat. Photon., vol. 3, no.

4, pp. 230-232, 2009.

[10] R. M. Fortenberry, W. V. Sorin, H. Lin, S. A. Newton, J. K. Andersen,
and M. N. Islam, “Low-power ultrashort optical pulse characterization
using linear dispersion,” in Proc. Opt. Fiber Commun. Conf., vol. 6 of
1997 OSA Tech. Digest Series (Opt. Soc. Am., 1997), , pp. 290-291,
paper ThL3.

[11] R.M. Fortenberry and W. V. Sorin, “Apparatus for characterizing short
optical pulses,” U.S. Patent 5,684,586, Nov. 4, 1997.

[12] N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, “Complete
characterization of optical pulses by real-time spectral interferometry,”
Appl. Opt., vol. 44, no. 36, pp. 78627855, 2005.

[13] T.-J. Ahn, Y. Park, and J. Azaia, “Improved optical pulse characteriza-
tion based on feedback-controlled Hilbert transformation temporal in-
terferometry,” IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 475-477,
Apr. 2008.

[14] F. Hakimi and H. Hakimi, “Measurement of optical fiber dispersion
and dispersion slope using a pair of short optical pulses and Fourier
transform property of dispersive medium,” Opt. Eng., vol. 40, no. 6,
pp. 1053-1056, 2001.

[15] C. Dorrer, “Chromatic dispersion characterization by direct instanta-
neous frequency measurement,” Opt. Lett., vol. 29, pp. 204-206, 2004.

[16] G.P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Diego, CA: Aca-
demic, 2001, ch. 2.

[17] T. Jannson, “Real-time Fourier transformation in dispersive optical
fibers,” Opt. Lett., vol. 8, pp. 232-234, 1983.

[18] J. Azaiia and M. A. Muriel, “Real-time optical spectrum analysis based
on the time-space duality in chirped fiber gratings,” IEEE J. Quantum
Electron., vol. 36, no. 5, pp. 517-526, May 2000.

[9

—



XIA AND YAO: CHARACTERIZATION OF SUB-PICOSECOND PULSES

[19] M. Miyagi and S. Nishida, “Pulse spreading in a single-mode fiber due
to third-order dispersion,” Appl. Opt., vol. 18, no. 5, pp. 678-682, 1979.

[20] I S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Prod-
ucts, 7th ed. San Diego, CA: Academic, 2007, ch. 3.69.

[21] M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of
fringe-pattern analysis for computer-based topography and interferom-
etry,” J. Opt. Soc. Am., vol. 72, no. 1, pp. 156-160, 1982.

[22] B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift tech-
nique for the megsurement of chromatic dispersion in optical fibers
using LED’s,” IEEE J. Quantum Electron., vol. QE-18, no. 10, pp.
1509-1515, Oct. 1982.

[23] K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry
enabled by amplified dispersive Fourier transformation,” Appl. Phys.
Lett., vol. 93, no. 3, pp. 0311061-0311063, 2008.

[24] L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase
measurement by femtosecond spectral interferometry for applications
in spectroscopy,” J. Opt. Soc. Am. B, vol. 12, no. 12, pp. 2467-2474,
1995.

[25] M. Westlund, P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li,
“High performance optical-fiber-nonlinearity-based optical waveform
monitoring,” J. Lightw. Technol., vol. 23, no. 6, pp. 2012-2022, Jun.
2005.

[26] X. Fang and R. O. Claus, “Polarization-independent all-fiber wave-
length-division multiplexer based on a Sagnac interferometer,” Opt.
Lett., vol. 20, no. 20, pp. 2146-2148, 1995.

Haiyun Xia received the B.S. degree in physics and
M.S. degree in optics from Soochow University,
China, in 2003 and 2006, respectively. Currently,
he is working toward the Ph.D. degree in opto-
electronics as a joint training student in Beijing
University of Aeronautics and Astronautics, China,
and the University of Ottawa, Ottawa, Canada.

His current research interests include all-optical
signal processing, ultrashort laser pulse characteri-
zation, laser remote sensing, and fiber-optic sensors.

5037

Jianping Yao (M’99-SM’01) received the Ph.D. de-
gree in electrical engineering, in 1997, from the Uni-
versité de Toulon, Toulon, France.

He joined the School of Information Technology
and Engineering, University of Ottawa, Ontario,
Canada, in 2001, where he is currently a Professor,
Director of the Microwave Photonics Research
Laboratory, and Director of the Ottawa-Carleton
Institute for Electrical and Computer Engineering.
From 1999 to 2001, he held a faculty position with
the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore. He holds a Yongqian Endowed
Visiting Chair Professorship with Zhejiang University, China. He spent three
months as an Invited Professor in the Institut National Polytechnique de
Grenoble, France, in 2005. His research has focused on microwave photonics,
which includes all-optical microwave signal processing, photonic generation of
microwave, millimeter-wave and THz, radio over fiber, UWB over fiber, fiber
Bragg gratings for microwave photonics applications, and optically controlled
phased array antenna. His research interests also include fiber lasers, fiber-optic
sensors, and biophotonics. He has authored or co-authored over 130 papers in
refereed journals and over 110 papers in conference proceeding.

Dr. Yao received the 2005 International Creative Research Award of the Uni-
versity of Ottawa. He was the recipient of the 2007 George S. Glinski Award for
Excellence in Research. He was named University Research Chair in Microwave
Photonics in 2007. He was a recipient of an NSERC Discovery Accelerator Sup-
plements award in 2008. He is an Associate Editor of the International Journal
of Microwave and Optical Technology. He is on the Editorial Board of IEEE
TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. He is a registered
professional engineer of Ontario. He is a member of SPIE, OSA and a senior
member of IEEE/LEOS and IEEE/MTT.



